64-point radix-2 fixed-point DIF FFT IV-KAT Tables (continued)
John Bryan
(P,b,n)=(0,0,0) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+0] | ={x[0+0]+x[64+0]}>>1 | x[0] | ={x[0]+x[64]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+1] | ={x[0+1]+x[64+1]}>>1 | x[1] | ={x[1]+x[65]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(0)] | = {(x[64+2(0)]-x[0+2(0)])t[(2)(0)]-(x[0+2(0)+1]-x[64+2(0)+1])t[(2)(0)+1]}>>1 | x[64+0] | = {(x[64+0]-x[0+0])t[0]-(x[0+0+1]-x[64+0+1])t[0+1]}>>1 | x[64] | = {(x[64]-x[0])t[0]-(x[1]-x[65])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(0)+1] | = {(x[64+2(0)+1]-x[0+2(0)+1])t[(2)(0)]+(x[0+2(0)]-x[64+2(0)])t[(2)(0)+1]}>>1 | x[64+1] | = {(x[64+1]-x[0+1])t[0]+(x[0+0]-x[64+0])t[0+1]}>>1 | x[65] | = {(x[65]-x[1])t[0]+(x[0]-x[64])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,1) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+2] | ={x[0+2]+x[64+2]}>>1 | x[2] | ={x[2]+x[66]}>>1 | | ={1000 +1000}>>1 | | ={02000}>>1 | | =1000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+3] | ={x[0+3]+x[64+3]}>>1 | x[3] | ={x[3]+x[67]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(1)] | = {(x[64+2(1)]-x[0+2(1)])t[(2)(1)]-(x[0+2(1)+1]-x[64+2(1)+1])t[(2)(1)+1]}>>1 | x[64+2] | = {(x[64+2]-x[0+2])t[2]-(x[0+2+1]-x[64+2+1])t[2+1]}>>1 | x[66] | = {(x[66]-x[2])t[2]-(x[3]-x[67])t[3]}>>1 | | = {(1000-1000)809d-(0000-0000)f374}>>1 | | = {(00000)809d-(00000)f374}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(1)+1] | = {(x[64+2(1)+1]-x[0+2(1)+1])t[(2)(1)]+(x[0+2(1)]-x[64+2(1)])t[(2)(1)+1]}>>1 | x[64+3] | = {(x[64+3]-x[0+3])t[2]+(x[0+2]-x[64+2])t[2+1]}>>1 | x[67] | = {(x[67]-x[3])t[2]+(x[2]-x[66])t[3]}>>1 | | = {(0000-0000)809d+(1000-1000)f374}>>1 | | = {(00000)809d+(00000)f374}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,2) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=2 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+4] | ={x[0+4]+x[64+4]}>>1 | x[4] | ={x[4]+x[68]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+5] | ={x[0+5]+x[64+5]}>>1 | x[5] | ={x[5]+x[69]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(2)] | = {(x[64+2(2)]-x[0+2(2)])t[(2)(2)]-(x[0+2(2)+1]-x[64+2(2)+1])t[(2)(2)+1]}>>1 | x[64+4] | = {(x[64+4]-x[0+4])t[4]-(x[0+4+1]-x[64+4+1])t[4+1]}>>1 | x[68] | = {(x[68]-x[4])t[4]-(x[5]-x[69])t[5]}>>1 | | = {(0000-0000)8275-(0000-0000)e707}>>1 | | = {(00000)8275-(00000)e707}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(2)+1] | = {(x[64+2(2)+1]-x[0+2(2)+1])t[(2)(2)]+(x[0+2(2)]-x[64+2(2)])t[(2)(2)+1]}>>1 | x[64+5] | = {(x[64+5]-x[0+5])t[4]+(x[0+4]-x[64+4])t[4+1]}>>1 | x[69] | = {(x[69]-x[5])t[4]+(x[4]-x[68])t[5]}>>1 | | = {(0000-0000)8275+(0000-0000)e707}>>1 | | = {(00000)8275+(00000)e707}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,3) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=3 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+6] | ={x[0+6]+x[64+6]}>>1 | x[6] | ={x[6]+x[70]}>>1 | | ={f000 +f000}>>1 | | ={fe000}>>1 | | =f000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+7] | ={x[0+7]+x[64+7]}>>1 | x[7] | ={x[7]+x[71]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(3)] | = {(x[64+2(3)]-x[0+2(3)])t[(2)(3)]-(x[0+2(3)+1]-x[64+2(3)+1])t[(2)(3)+1]}>>1 | x[64+6] | = {(x[64+6]-x[0+6])t[6]-(x[0+6+1]-x[64+6+1])t[6+1]}>>1 | x[70] | = {(x[70]-x[6])t[6]-(x[7]-x[71])t[7]}>>1 | | = {(f000-f000)8582-(0000-0000)dad7}>>1 | | = {(00000)8582-(00000)dad7}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(3)+1] | = {(x[64+2(3)+1]-x[0+2(3)+1])t[(2)(3)]+(x[0+2(3)]-x[64+2(3)])t[(2)(3)+1]}>>1 | x[64+7] | = {(x[64+7]-x[0+7])t[6]+(x[0+6]-x[64+6])t[6+1]}>>1 | x[71] | = {(x[71]-x[7])t[6]+(x[6]-x[70])t[7]}>>1 | | = {(0000-0000)8582+(f000-f000)dad7}>>1 | | = {(00000)8582+(00000)dad7}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,4) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=4 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+8] | ={x[0+8]+x[64+8]}>>1 | x[8] | ={x[8]+x[72]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+9] | ={x[0+9]+x[64+9]}>>1 | x[9] | ={x[9]+x[73]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(4)] | = {(x[64+2(4)]-x[0+2(4)])t[(2)(4)]-(x[0+2(4)+1]-x[64+2(4)+1])t[(2)(4)+1]}>>1 | x[64+8] | = {(x[64+8]-x[0+8])t[8]-(x[0+8+1]-x[64+8+1])t[8+1]}>>1 | x[72] | = {(x[72]-x[8])t[8]-(x[9]-x[73])t[9]}>>1 | | = {(0000-0000)89be-(0000-0000)cf04}>>1 | | = {(00000)89be-(00000)cf04}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(4)+1] | = {(x[64+2(4)+1]-x[0+2(4)+1])t[(2)(4)]+(x[0+2(4)]-x[64+2(4)])t[(2)(4)+1]}>>1 | x[64+9] | = {(x[64+9]-x[0+9])t[8]+(x[0+8]-x[64+8])t[8+1]}>>1 | x[73] | = {(x[73]-x[9])t[8]+(x[8]-x[72])t[9]}>>1 | | = {(0000-0000)89be+(0000-0000)cf04}>>1 | | = {(00000)89be+(00000)cf04}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,5) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=5 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+10] | ={x[0+10]+x[64+10]}>>1 | x[10] | ={x[10]+x[74]}>>1 | | ={1000 +1000}>>1 | | ={02000}>>1 | | =1000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+11] | ={x[0+11]+x[64+11]}>>1 | x[11] | ={x[11]+x[75]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(5)] | = {(x[64+2(5)]-x[0+2(5)])t[(2)(5)]-(x[0+2(5)+1]-x[64+2(5)+1])t[(2)(5)+1]}>>1 | x[64+10] | = {(x[64+10]-x[0+10])t[10]-(x[0+10+1]-x[64+10+1])t[10+1]}>>1 | x[74] | = {(x[74]-x[10])t[10]-(x[11]-x[75])t[11]}>>1 | | = {(1000-1000)8f1d-(0000-0000)c3a9}>>1 | | = {(00000)8f1d-(00000)c3a9}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(5)+1] | = {(x[64+2(5)+1]-x[0+2(5)+1])t[(2)(5)]+(x[0+2(5)]-x[64+2(5)])t[(2)(5)+1]}>>1 | x[64+11] | = {(x[64+11]-x[0+11])t[10]+(x[0+10]-x[64+10])t[10+1]}>>1 | x[75] | = {(x[75]-x[11])t[10]+(x[10]-x[74])t[11]}>>1 | | = {(0000-0000)8f1d+(1000-1000)c3a9}>>1 | | = {(00000)8f1d+(00000)c3a9}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,6) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=6 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+12] | ={x[0+12]+x[64+12]}>>1 | x[12] | ={x[12]+x[76]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+13] | ={x[0+13]+x[64+13]}>>1 | x[13] | ={x[13]+x[77]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(6)] | = {(x[64+2(6)]-x[0+2(6)])t[(2)(6)]-(x[0+2(6)+1]-x[64+2(6)+1])t[(2)(6)+1]}>>1 | x[64+12] | = {(x[64+12]-x[0+12])t[12]-(x[0+12+1]-x[64+12+1])t[12+1]}>>1 | x[76] | = {(x[76]-x[12])t[12]-(x[13]-x[77])t[13]}>>1 | | = {(0000-0000)9592-(0000-0000)b8e3}>>1 | | = {(00000)9592-(00000)b8e3}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(6)+1] | = {(x[64+2(6)+1]-x[0+2(6)+1])t[(2)(6)]+(x[0+2(6)]-x[64+2(6)])t[(2)(6)+1]}>>1 | x[64+13] | = {(x[64+13]-x[0+13])t[12]+(x[0+12]-x[64+12])t[12+1]}>>1 | x[77] | = {(x[77]-x[13])t[12]+(x[12]-x[76])t[13]}>>1 | | = {(0000-0000)9592+(0000-0000)b8e3}>>1 | | = {(00000)9592+(00000)b8e3}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,7) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=7 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+14] | ={x[0+14]+x[64+14]}>>1 | x[14] | ={x[14]+x[78]}>>1 | | ={f000 +f000}>>1 | | ={fe000}>>1 | | =f000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+15] | ={x[0+15]+x[64+15]}>>1 | x[15] | ={x[15]+x[79]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(7)] | = {(x[64+2(7)]-x[0+2(7)])t[(2)(7)]-(x[0+2(7)+1]-x[64+2(7)+1])t[(2)(7)+1]}>>1 | x[64+14] | = {(x[64+14]-x[0+14])t[14]-(x[0+14+1]-x[64+14+1])t[14+1]}>>1 | x[78] | = {(x[78]-x[14])t[14]-(x[15]-x[79])t[15]}>>1 | | = {(f000-f000)9d0d-(0000-0000)aecc}>>1 | | = {(00000)9d0d-(00000)aecc}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(7)+1] | = {(x[64+2(7)+1]-x[0+2(7)+1])t[(2)(7)]+(x[0+2(7)]-x[64+2(7)])t[(2)(7)+1]}>>1 | x[64+15] | = {(x[64+15]-x[0+15])t[14]+(x[0+14]-x[64+14])t[14+1]}>>1 | x[79] | = {(x[79]-x[15])t[14]+(x[14]-x[78])t[15]}>>1 | | = {(0000-0000)9d0d+(f000-f000)aecc}>>1 | | = {(00000)9d0d+(00000)aecc}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,8) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=8 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+16] | ={x[0+16]+x[64+16]}>>1 | x[16] | ={x[16]+x[80]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+17] | ={x[0+17]+x[64+17]}>>1 | x[17] | ={x[17]+x[81]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(8)] | = {(x[64+2(8)]-x[0+2(8)])t[(2)(8)]-(x[0+2(8)+1]-x[64+2(8)+1])t[(2)(8)+1]}>>1 | x[64+16] | = {(x[64+16]-x[0+16])t[16]-(x[0+16+1]-x[64+16+1])t[16+1]}>>1 | x[80] | = {(x[80]-x[16])t[16]-(x[17]-x[81])t[17]}>>1 | | = {(0000-0000)a57d-(0000-0000)a57d}>>1 | | = {(00000)a57d-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(8)+1] | = {(x[64+2(8)+1]-x[0+2(8)+1])t[(2)(8)]+(x[0+2(8)]-x[64+2(8)])t[(2)(8)+1]}>>1 | x[64+17] | = {(x[64+17]-x[0+17])t[16]+(x[0+16]-x[64+16])t[16+1]}>>1 | x[81] | = {(x[81]-x[17])t[16]+(x[16]-x[80])t[17]}>>1 | | = {(0000-0000)a57d+(0000-0000)a57d}>>1 | | = {(00000)a57d+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,9) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=9 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+18] | ={x[0+18]+x[64+18]}>>1 | x[18] | ={x[18]+x[82]}>>1 | | ={1000 +1000}>>1 | | ={02000}>>1 | | =1000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+19] | ={x[0+19]+x[64+19]}>>1 | x[19] | ={x[19]+x[83]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(9)] | = {(x[64+2(9)]-x[0+2(9)])t[(2)(9)]-(x[0+2(9)+1]-x[64+2(9)+1])t[(2)(9)+1]}>>1 | x[64+18] | = {(x[64+18]-x[0+18])t[18]-(x[0+18+1]-x[64+18+1])t[18+1]}>>1 | x[82] | = {(x[82]-x[18])t[18]-(x[19]-x[83])t[19]}>>1 | | = {(1000-1000)aecc-(0000-0000)9d0d}>>1 | | = {(00000)aecc-(00000)9d0d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(9)+1] | = {(x[64+2(9)+1]-x[0+2(9)+1])t[(2)(9)]+(x[0+2(9)]-x[64+2(9)])t[(2)(9)+1]}>>1 | x[64+19] | = {(x[64+19]-x[0+19])t[18]+(x[0+18]-x[64+18])t[18+1]}>>1 | x[83] | = {(x[83]-x[19])t[18]+(x[18]-x[82])t[19]}>>1 | | = {(0000-0000)aecc+(1000-1000)9d0d}>>1 | | = {(00000)aecc+(00000)9d0d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,10) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=10 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+20] | ={x[0+20]+x[64+20]}>>1 | x[20] | ={x[20]+x[84]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+21] | ={x[0+21]+x[64+21]}>>1 | x[21] | ={x[21]+x[85]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(10)] | = {(x[64+2(10)]-x[0+2(10)])t[(2)(10)]-(x[0+2(10)+1]-x[64+2(10)+1])t[(2)(10)+1]}>>1 | x[64+20] | = {(x[64+20]-x[0+20])t[20]-(x[0+20+1]-x[64+20+1])t[20+1]}>>1 | x[84] | = {(x[84]-x[20])t[20]-(x[21]-x[85])t[21]}>>1 | | = {(0000-0000)b8e3-(0000-0000)9592}>>1 | | = {(00000)b8e3-(00000)9592}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(10)+1] | = {(x[64+2(10)+1]-x[0+2(10)+1])t[(2)(10)]+(x[0+2(10)]-x[64+2(10)])t[(2)(10)+1]}>>1 | x[64+21] | = {(x[64+21]-x[0+21])t[20]+(x[0+20]-x[64+20])t[20+1]}>>1 | x[85] | = {(x[85]-x[21])t[20]+(x[20]-x[84])t[21]}>>1 | | = {(0000-0000)b8e3+(0000-0000)9592}>>1 | | = {(00000)b8e3+(00000)9592}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,11) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=11 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+22] | ={x[0+22]+x[64+22]}>>1 | x[22] | ={x[22]+x[86]}>>1 | | ={f000 +f000}>>1 | | ={fe000}>>1 | | =f000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+23] | ={x[0+23]+x[64+23]}>>1 | x[23] | ={x[23]+x[87]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(11)] | = {(x[64+2(11)]-x[0+2(11)])t[(2)(11)]-(x[0+2(11)+1]-x[64+2(11)+1])t[(2)(11)+1]}>>1 | x[64+22] | = {(x[64+22]-x[0+22])t[22]-(x[0+22+1]-x[64+22+1])t[22+1]}>>1 | x[86] | = {(x[86]-x[22])t[22]-(x[23]-x[87])t[23]}>>1 | | = {(f000-f000)c3a9-(0000-0000)8f1d}>>1 | | = {(00000)c3a9-(00000)8f1d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(11)+1] | = {(x[64+2(11)+1]-x[0+2(11)+1])t[(2)(11)]+(x[0+2(11)]-x[64+2(11)])t[(2)(11)+1]}>>1 | x[64+23] | = {(x[64+23]-x[0+23])t[22]+(x[0+22]-x[64+22])t[22+1]}>>1 | x[87] | = {(x[87]-x[23])t[22]+(x[22]-x[86])t[23]}>>1 | | = {(0000-0000)c3a9+(f000-f000)8f1d}>>1 | | = {(00000)c3a9+(00000)8f1d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,12) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=12 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+24] | ={x[0+24]+x[64+24]}>>1 | x[24] | ={x[24]+x[88]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+25] | ={x[0+25]+x[64+25]}>>1 | x[25] | ={x[25]+x[89]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(12)] | = {(x[64+2(12)]-x[0+2(12)])t[(2)(12)]-(x[0+2(12)+1]-x[64+2(12)+1])t[(2)(12)+1]}>>1 | x[64+24] | = {(x[64+24]-x[0+24])t[24]-(x[0+24+1]-x[64+24+1])t[24+1]}>>1 | x[88] | = {(x[88]-x[24])t[24]-(x[25]-x[89])t[25]}>>1 | | = {(0000-0000)cf04-(0000-0000)89be}>>1 | | = {(00000)cf04-(00000)89be}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(12)+1] | = {(x[64+2(12)+1]-x[0+2(12)+1])t[(2)(12)]+(x[0+2(12)]-x[64+2(12)])t[(2)(12)+1]}>>1 | x[64+25] | = {(x[64+25]-x[0+25])t[24]+(x[0+24]-x[64+24])t[24+1]}>>1 | x[89] | = {(x[89]-x[25])t[24]+(x[24]-x[88])t[25]}>>1 | | = {(0000-0000)cf04+(0000-0000)89be}>>1 | | = {(00000)cf04+(00000)89be}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,13) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=13 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+26] | ={x[0+26]+x[64+26]}>>1 | x[26] | ={x[26]+x[90]}>>1 | | ={1000 +1000}>>1 | | ={02000}>>1 | | =1000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+27] | ={x[0+27]+x[64+27]}>>1 | x[27] | ={x[27]+x[91]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(13)] | = {(x[64+2(13)]-x[0+2(13)])t[(2)(13)]-(x[0+2(13)+1]-x[64+2(13)+1])t[(2)(13)+1]}>>1 | x[64+26] | = {(x[64+26]-x[0+26])t[26]-(x[0+26+1]-x[64+26+1])t[26+1]}>>1 | x[90] | = {(x[90]-x[26])t[26]-(x[27]-x[91])t[27]}>>1 | | = {(1000-1000)dad7-(0000-0000)8582}>>1 | | = {(00000)dad7-(00000)8582}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(13)+1] | = {(x[64+2(13)+1]-x[0+2(13)+1])t[(2)(13)]+(x[0+2(13)]-x[64+2(13)])t[(2)(13)+1]}>>1 | x[64+27] | = {(x[64+27]-x[0+27])t[26]+(x[0+26]-x[64+26])t[26+1]}>>1 | x[91] | = {(x[91]-x[27])t[26]+(x[26]-x[90])t[27]}>>1 | | = {(0000-0000)dad7+(1000-1000)8582}>>1 | | = {(00000)dad7+(00000)8582}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,14) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=14 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+28] | ={x[0+28]+x[64+28]}>>1 | x[28] | ={x[28]+x[92]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+29] | ={x[0+29]+x[64+29]}>>1 | x[29] | ={x[29]+x[93]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(14)] | = {(x[64+2(14)]-x[0+2(14)])t[(2)(14)]-(x[0+2(14)+1]-x[64+2(14)+1])t[(2)(14)+1]}>>1 | x[64+28] | = {(x[64+28]-x[0+28])t[28]-(x[0+28+1]-x[64+28+1])t[28+1]}>>1 | x[92] | = {(x[92]-x[28])t[28]-(x[29]-x[93])t[29]}>>1 | | = {(0000-0000)e707-(0000-0000)8275}>>1 | | = {(00000)e707-(00000)8275}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(14)+1] | = {(x[64+2(14)+1]-x[0+2(14)+1])t[(2)(14)]+(x[0+2(14)]-x[64+2(14)])t[(2)(14)+1]}>>1 | x[64+29] | = {(x[64+29]-x[0+29])t[28]+(x[0+28]-x[64+28])t[28+1]}>>1 | x[93] | = {(x[93]-x[29])t[28]+(x[28]-x[92])t[29]}>>1 | | = {(0000-0000)e707+(0000-0000)8275}>>1 | | = {(00000)e707+(00000)8275}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,15) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=15 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+30] | ={x[0+30]+x[64+30]}>>1 | x[30] | ={x[30]+x[94]}>>1 | | ={f000 +f000}>>1 | | ={fe000}>>1 | | =f000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+31] | ={x[0+31]+x[64+31]}>>1 | x[31] | ={x[31]+x[95]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(15)] | = {(x[64+2(15)]-x[0+2(15)])t[(2)(15)]-(x[0+2(15)+1]-x[64+2(15)+1])t[(2)(15)+1]}>>1 | x[64+30] | = {(x[64+30]-x[0+30])t[30]-(x[0+30+1]-x[64+30+1])t[30+1]}>>1 | x[94] | = {(x[94]-x[30])t[30]-(x[31]-x[95])t[31]}>>1 | | = {(f000-f000)f374-(0000-0000)809d}>>1 | | = {(00000)f374-(00000)809d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(15)+1] | = {(x[64+2(15)+1]-x[0+2(15)+1])t[(2)(15)]+(x[0+2(15)]-x[64+2(15)])t[(2)(15)+1]}>>1 | x[64+31] | = {(x[64+31]-x[0+31])t[30]+(x[0+30]-x[64+30])t[30+1]}>>1 | x[95] | = {(x[95]-x[31])t[30]+(x[30]-x[94])t[31]}>>1 | | = {(0000-0000)f374+(f000-f000)809d}>>1 | | = {(00000)f374+(00000)809d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,16) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=16 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+32] | ={x[0+32]+x[64+32]}>>1 | x[32] | ={x[32]+x[96]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+33] | ={x[0+33]+x[64+33]}>>1 | x[33] | ={x[33]+x[97]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(16)] | = {(x[64+2(16)]-x[0+2(16)])t[(2)(16)]-(x[0+2(16)+1]-x[64+2(16)+1])t[(2)(16)+1]}>>1 | x[64+32] | = {(x[64+32]-x[0+32])t[32]-(x[0+32+1]-x[64+32+1])t[32+1]}>>1 | x[96] | = {(x[96]-x[32])t[32]-(x[33]-x[97])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(16)+1] | = {(x[64+2(16)+1]-x[0+2(16)+1])t[(2)(16)]+(x[0+2(16)]-x[64+2(16)])t[(2)(16)+1]}>>1 | x[64+33] | = {(x[64+33]-x[0+33])t[32]+(x[0+32]-x[64+32])t[32+1]}>>1 | x[97] | = {(x[97]-x[33])t[32]+(x[32]-x[96])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,17) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=17 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+34] | ={x[0+34]+x[64+34]}>>1 | x[34] | ={x[34]+x[98]}>>1 | | ={1000 +1000}>>1 | | ={02000}>>1 | | =1000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+35] | ={x[0+35]+x[64+35]}>>1 | x[35] | ={x[35]+x[99]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(17)] | = {(x[64+2(17)]-x[0+2(17)])t[(2)(17)]-(x[0+2(17)+1]-x[64+2(17)+1])t[(2)(17)+1]}>>1 | x[64+34] | = {(x[64+34]-x[0+34])t[34]-(x[0+34+1]-x[64+34+1])t[34+1]}>>1 | x[98] | = {(x[98]-x[34])t[34]-(x[35]-x[99])t[35]}>>1 | | = {(1000-1000)0c8b-(0000-0000)809d}>>1 | | = {(00000)0c8b-(00000)809d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(17)+1] | = {(x[64+2(17)+1]-x[0+2(17)+1])t[(2)(17)]+(x[0+2(17)]-x[64+2(17)])t[(2)(17)+1]}>>1 | x[64+35] | = {(x[64+35]-x[0+35])t[34]+(x[0+34]-x[64+34])t[34+1]}>>1 | x[99] | = {(x[99]-x[35])t[34]+(x[34]-x[98])t[35]}>>1 | | = {(0000-0000)0c8b+(1000-1000)809d}>>1 | | = {(00000)0c8b+(00000)809d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,18) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=18 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+36] | ={x[0+36]+x[64+36]}>>1 | x[36] | ={x[36]+x[100]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+37] | ={x[0+37]+x[64+37]}>>1 | x[37] | ={x[37]+x[101]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(18)] | = {(x[64+2(18)]-x[0+2(18)])t[(2)(18)]-(x[0+2(18)+1]-x[64+2(18)+1])t[(2)(18)+1]}>>1 | x[64+36] | = {(x[64+36]-x[0+36])t[36]-(x[0+36+1]-x[64+36+1])t[36+1]}>>1 | x[100] | = {(x[100]-x[36])t[36]-(x[37]-x[101])t[37]}>>1 | | = {(0000-0000)18f8-(0000-0000)8275}>>1 | | = {(00000)18f8-(00000)8275}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(18)+1] | = {(x[64+2(18)+1]-x[0+2(18)+1])t[(2)(18)]+(x[0+2(18)]-x[64+2(18)])t[(2)(18)+1]}>>1 | x[64+37] | = {(x[64+37]-x[0+37])t[36]+(x[0+36]-x[64+36])t[36+1]}>>1 | x[101] | = {(x[101]-x[37])t[36]+(x[36]-x[100])t[37]}>>1 | | = {(0000-0000)18f8+(0000-0000)8275}>>1 | | = {(00000)18f8+(00000)8275}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,19) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=19 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+38] | ={x[0+38]+x[64+38]}>>1 | x[38] | ={x[38]+x[102]}>>1 | | ={f000 +f000}>>1 | | ={fe000}>>1 | | =f000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+39] | ={x[0+39]+x[64+39]}>>1 | x[39] | ={x[39]+x[103]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(19)] | = {(x[64+2(19)]-x[0+2(19)])t[(2)(19)]-(x[0+2(19)+1]-x[64+2(19)+1])t[(2)(19)+1]}>>1 | x[64+38] | = {(x[64+38]-x[0+38])t[38]-(x[0+38+1]-x[64+38+1])t[38+1]}>>1 | x[102] | = {(x[102]-x[38])t[38]-(x[39]-x[103])t[39]}>>1 | | = {(f000-f000)2528-(0000-0000)8582}>>1 | | = {(00000)2528-(00000)8582}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(19)+1] | = {(x[64+2(19)+1]-x[0+2(19)+1])t[(2)(19)]+(x[0+2(19)]-x[64+2(19)])t[(2)(19)+1]}>>1 | x[64+39] | = {(x[64+39]-x[0+39])t[38]+(x[0+38]-x[64+38])t[38+1]}>>1 | x[103] | = {(x[103]-x[39])t[38]+(x[38]-x[102])t[39]}>>1 | | = {(0000-0000)2528+(f000-f000)8582}>>1 | | = {(00000)2528+(00000)8582}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,20) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=20 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+40] | ={x[0+40]+x[64+40]}>>1 | x[40] | ={x[40]+x[104]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+41] | ={x[0+41]+x[64+41]}>>1 | x[41] | ={x[41]+x[105]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(20)] | = {(x[64+2(20)]-x[0+2(20)])t[(2)(20)]-(x[0+2(20)+1]-x[64+2(20)+1])t[(2)(20)+1]}>>1 | x[64+40] | = {(x[64+40]-x[0+40])t[40]-(x[0+40+1]-x[64+40+1])t[40+1]}>>1 | x[104] | = {(x[104]-x[40])t[40]-(x[41]-x[105])t[41]}>>1 | | = {(0000-0000)30fb-(0000-0000)89be}>>1 | | = {(00000)30fb-(00000)89be}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(20)+1] | = {(x[64+2(20)+1]-x[0+2(20)+1])t[(2)(20)]+(x[0+2(20)]-x[64+2(20)])t[(2)(20)+1]}>>1 | x[64+41] | = {(x[64+41]-x[0+41])t[40]+(x[0+40]-x[64+40])t[40+1]}>>1 | x[105] | = {(x[105]-x[41])t[40]+(x[40]-x[104])t[41]}>>1 | | = {(0000-0000)30fb+(0000-0000)89be}>>1 | | = {(00000)30fb+(00000)89be}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,21) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=21 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+42] | ={x[0+42]+x[64+42]}>>1 | x[42] | ={x[42]+x[106]}>>1 | | ={1000 +1000}>>1 | | ={02000}>>1 | | =1000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+43] | ={x[0+43]+x[64+43]}>>1 | x[43] | ={x[43]+x[107]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(21)] | = {(x[64+2(21)]-x[0+2(21)])t[(2)(21)]-(x[0+2(21)+1]-x[64+2(21)+1])t[(2)(21)+1]}>>1 | x[64+42] | = {(x[64+42]-x[0+42])t[42]-(x[0+42+1]-x[64+42+1])t[42+1]}>>1 | x[106] | = {(x[106]-x[42])t[42]-(x[43]-x[107])t[43]}>>1 | | = {(1000-1000)3c56-(0000-0000)8f1d}>>1 | | = {(00000)3c56-(00000)8f1d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(21)+1] | = {(x[64+2(21)+1]-x[0+2(21)+1])t[(2)(21)]+(x[0+2(21)]-x[64+2(21)])t[(2)(21)+1]}>>1 | x[64+43] | = {(x[64+43]-x[0+43])t[42]+(x[0+42]-x[64+42])t[42+1]}>>1 | x[107] | = {(x[107]-x[43])t[42]+(x[42]-x[106])t[43]}>>1 | | = {(0000-0000)3c56+(1000-1000)8f1d}>>1 | | = {(00000)3c56+(00000)8f1d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,22) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=22 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+44] | ={x[0+44]+x[64+44]}>>1 | x[44] | ={x[44]+x[108]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+45] | ={x[0+45]+x[64+45]}>>1 | x[45] | ={x[45]+x[109]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(22)] | = {(x[64+2(22)]-x[0+2(22)])t[(2)(22)]-(x[0+2(22)+1]-x[64+2(22)+1])t[(2)(22)+1]}>>1 | x[64+44] | = {(x[64+44]-x[0+44])t[44]-(x[0+44+1]-x[64+44+1])t[44+1]}>>1 | x[108] | = {(x[108]-x[44])t[44]-(x[45]-x[109])t[45]}>>1 | | = {(0000-0000)471c-(0000-0000)9592}>>1 | | = {(00000)471c-(00000)9592}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(22)+1] | = {(x[64+2(22)+1]-x[0+2(22)+1])t[(2)(22)]+(x[0+2(22)]-x[64+2(22)])t[(2)(22)+1]}>>1 | x[64+45] | = {(x[64+45]-x[0+45])t[44]+(x[0+44]-x[64+44])t[44+1]}>>1 | x[109] | = {(x[109]-x[45])t[44]+(x[44]-x[108])t[45]}>>1 | | = {(0000-0000)471c+(0000-0000)9592}>>1 | | = {(00000)471c+(00000)9592}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,23) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=23 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+46] | ={x[0+46]+x[64+46]}>>1 | x[46] | ={x[46]+x[110]}>>1 | | ={f000 +f000}>>1 | | ={fe000}>>1 | | =f000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+47] | ={x[0+47]+x[64+47]}>>1 | x[47] | ={x[47]+x[111]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(23)] | = {(x[64+2(23)]-x[0+2(23)])t[(2)(23)]-(x[0+2(23)+1]-x[64+2(23)+1])t[(2)(23)+1]}>>1 | x[64+46] | = {(x[64+46]-x[0+46])t[46]-(x[0+46+1]-x[64+46+1])t[46+1]}>>1 | x[110] | = {(x[110]-x[46])t[46]-(x[47]-x[111])t[47]}>>1 | | = {(f000-f000)5133-(0000-0000)9d0d}>>1 | | = {(00000)5133-(00000)9d0d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(23)+1] | = {(x[64+2(23)+1]-x[0+2(23)+1])t[(2)(23)]+(x[0+2(23)]-x[64+2(23)])t[(2)(23)+1]}>>1 | x[64+47] | = {(x[64+47]-x[0+47])t[46]+(x[0+46]-x[64+46])t[46+1]}>>1 | x[111] | = {(x[111]-x[47])t[46]+(x[46]-x[110])t[47]}>>1 | | = {(0000-0000)5133+(f000-f000)9d0d}>>1 | | = {(00000)5133+(00000)9d0d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,24) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=24 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+48] | ={x[0+48]+x[64+48]}>>1 | x[48] | ={x[48]+x[112]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+49] | ={x[0+49]+x[64+49]}>>1 | x[49] | ={x[49]+x[113]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(24)] | = {(x[64+2(24)]-x[0+2(24)])t[(2)(24)]-(x[0+2(24)+1]-x[64+2(24)+1])t[(2)(24)+1]}>>1 | x[64+48] | = {(x[64+48]-x[0+48])t[48]-(x[0+48+1]-x[64+48+1])t[48+1]}>>1 | x[112] | = {(x[112]-x[48])t[48]-(x[49]-x[113])t[49]}>>1 | | = {(0000-0000)5a82-(0000-0000)a57d}>>1 | | = {(00000)5a82-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(24)+1] | = {(x[64+2(24)+1]-x[0+2(24)+1])t[(2)(24)]+(x[0+2(24)]-x[64+2(24)])t[(2)(24)+1]}>>1 | x[64+49] | = {(x[64+49]-x[0+49])t[48]+(x[0+48]-x[64+48])t[48+1]}>>1 | x[113] | = {(x[113]-x[49])t[48]+(x[48]-x[112])t[49]}>>1 | | = {(0000-0000)5a82+(0000-0000)a57d}>>1 | | = {(00000)5a82+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,25) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=25 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+50] | ={x[0+50]+x[64+50]}>>1 | x[50] | ={x[50]+x[114]}>>1 | | ={1000 +1000}>>1 | | ={02000}>>1 | | =1000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+51] | ={x[0+51]+x[64+51]}>>1 | x[51] | ={x[51]+x[115]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(25)] | = {(x[64+2(25)]-x[0+2(25)])t[(2)(25)]-(x[0+2(25)+1]-x[64+2(25)+1])t[(2)(25)+1]}>>1 | x[64+50] | = {(x[64+50]-x[0+50])t[50]-(x[0+50+1]-x[64+50+1])t[50+1]}>>1 | x[114] | = {(x[114]-x[50])t[50]-(x[51]-x[115])t[51]}>>1 | | = {(1000-1000)62f2-(0000-0000)aecc}>>1 | | = {(00000)62f2-(00000)aecc}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(25)+1] | = {(x[64+2(25)+1]-x[0+2(25)+1])t[(2)(25)]+(x[0+2(25)]-x[64+2(25)])t[(2)(25)+1]}>>1 | x[64+51] | = {(x[64+51]-x[0+51])t[50]+(x[0+50]-x[64+50])t[50+1]}>>1 | x[115] | = {(x[115]-x[51])t[50]+(x[50]-x[114])t[51]}>>1 | | = {(0000-0000)62f2+(1000-1000)aecc}>>1 | | = {(00000)62f2+(00000)aecc}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,26) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=26 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+52] | ={x[0+52]+x[64+52]}>>1 | x[52] | ={x[52]+x[116]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+53] | ={x[0+53]+x[64+53]}>>1 | x[53] | ={x[53]+x[117]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(26)] | = {(x[64+2(26)]-x[0+2(26)])t[(2)(26)]-(x[0+2(26)+1]-x[64+2(26)+1])t[(2)(26)+1]}>>1 | x[64+52] | = {(x[64+52]-x[0+52])t[52]-(x[0+52+1]-x[64+52+1])t[52+1]}>>1 | x[116] | = {(x[116]-x[52])t[52]-(x[53]-x[117])t[53]}>>1 | | = {(0000-0000)6a6d-(0000-0000)b8e3}>>1 | | = {(00000)6a6d-(00000)b8e3}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(26)+1] | = {(x[64+2(26)+1]-x[0+2(26)+1])t[(2)(26)]+(x[0+2(26)]-x[64+2(26)])t[(2)(26)+1]}>>1 | x[64+53] | = {(x[64+53]-x[0+53])t[52]+(x[0+52]-x[64+52])t[52+1]}>>1 | x[117] | = {(x[117]-x[53])t[52]+(x[52]-x[116])t[53]}>>1 | | = {(0000-0000)6a6d+(0000-0000)b8e3}>>1 | | = {(00000)6a6d+(00000)b8e3}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,27) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=27 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+54] | ={x[0+54]+x[64+54]}>>1 | x[54] | ={x[54]+x[118]}>>1 | | ={f000 +f000}>>1 | | ={fe000}>>1 | | =f000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+55] | ={x[0+55]+x[64+55]}>>1 | x[55] | ={x[55]+x[119]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(27)] | = {(x[64+2(27)]-x[0+2(27)])t[(2)(27)]-(x[0+2(27)+1]-x[64+2(27)+1])t[(2)(27)+1]}>>1 | x[64+54] | = {(x[64+54]-x[0+54])t[54]-(x[0+54+1]-x[64+54+1])t[54+1]}>>1 | x[118] | = {(x[118]-x[54])t[54]-(x[55]-x[119])t[55]}>>1 | | = {(f000-f000)70e2-(0000-0000)c3a9}>>1 | | = {(00000)70e2-(00000)c3a9}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(27)+1] | = {(x[64+2(27)+1]-x[0+2(27)+1])t[(2)(27)]+(x[0+2(27)]-x[64+2(27)])t[(2)(27)+1]}>>1 | x[64+55] | = {(x[64+55]-x[0+55])t[54]+(x[0+54]-x[64+54])t[54+1]}>>1 | x[119] | = {(x[119]-x[55])t[54]+(x[54]-x[118])t[55]}>>1 | | = {(0000-0000)70e2+(f000-f000)c3a9}>>1 | | = {(00000)70e2+(00000)c3a9}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,28) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=28 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+56] | ={x[0+56]+x[64+56]}>>1 | x[56] | ={x[56]+x[120]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+57] | ={x[0+57]+x[64+57]}>>1 | x[57] | ={x[57]+x[121]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(28)] | = {(x[64+2(28)]-x[0+2(28)])t[(2)(28)]-(x[0+2(28)+1]-x[64+2(28)+1])t[(2)(28)+1]}>>1 | x[64+56] | = {(x[64+56]-x[0+56])t[56]-(x[0+56+1]-x[64+56+1])t[56+1]}>>1 | x[120] | = {(x[120]-x[56])t[56]-(x[57]-x[121])t[57]}>>1 | | = {(0000-0000)7641-(0000-0000)cf04}>>1 | | = {(00000)7641-(00000)cf04}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(28)+1] | = {(x[64+2(28)+1]-x[0+2(28)+1])t[(2)(28)]+(x[0+2(28)]-x[64+2(28)])t[(2)(28)+1]}>>1 | x[64+57] | = {(x[64+57]-x[0+57])t[56]+(x[0+56]-x[64+56])t[56+1]}>>1 | x[121] | = {(x[121]-x[57])t[56]+(x[56]-x[120])t[57]}>>1 | | = {(0000-0000)7641+(0000-0000)cf04}>>1 | | = {(00000)7641+(00000)cf04}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,29) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=29 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+58] | ={x[0+58]+x[64+58]}>>1 | x[58] | ={x[58]+x[122]}>>1 | | ={1000 +1000}>>1 | | ={02000}>>1 | | =1000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+59] | ={x[0+59]+x[64+59]}>>1 | x[59] | ={x[59]+x[123]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(29)] | = {(x[64+2(29)]-x[0+2(29)])t[(2)(29)]-(x[0+2(29)+1]-x[64+2(29)+1])t[(2)(29)+1]}>>1 | x[64+58] | = {(x[64+58]-x[0+58])t[58]-(x[0+58+1]-x[64+58+1])t[58+1]}>>1 | x[122] | = {(x[122]-x[58])t[58]-(x[59]-x[123])t[59]}>>1 | | = {(1000-1000)7a7d-(0000-0000)dad7}>>1 | | = {(00000)7a7d-(00000)dad7}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(29)+1] | = {(x[64+2(29)+1]-x[0+2(29)+1])t[(2)(29)]+(x[0+2(29)]-x[64+2(29)])t[(2)(29)+1]}>>1 | x[64+59] | = {(x[64+59]-x[0+59])t[58]+(x[0+58]-x[64+58])t[58+1]}>>1 | x[123] | = {(x[123]-x[59])t[58]+(x[58]-x[122])t[59]}>>1 | | = {(0000-0000)7a7d+(1000-1000)dad7}>>1 | | = {(00000)7a7d+(00000)dad7}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,30) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=30 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+60] | ={x[0+60]+x[64+60]}>>1 | x[60] | ={x[60]+x[124]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+61] | ={x[0+61]+x[64+61]}>>1 | x[61] | ={x[61]+x[125]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(30)] | = {(x[64+2(30)]-x[0+2(30)])t[(2)(30)]-(x[0+2(30)+1]-x[64+2(30)+1])t[(2)(30)+1]}>>1 | x[64+60] | = {(x[64+60]-x[0+60])t[60]-(x[0+60+1]-x[64+60+1])t[60+1]}>>1 | x[124] | = {(x[124]-x[60])t[60]-(x[61]-x[125])t[61]}>>1 | | = {(0000-0000)7d8a-(0000-0000)e707}>>1 | | = {(00000)7d8a-(00000)e707}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(30)+1] | = {(x[64+2(30)+1]-x[0+2(30)+1])t[(2)(30)]+(x[0+2(30)]-x[64+2(30)])t[(2)(30)+1]}>>1 | x[64+61] | = {(x[64+61]-x[0+61])t[60]+(x[0+60]-x[64+60])t[60+1]}>>1 | x[125] | = {(x[125]-x[61])t[60]+(x[60]-x[124])t[61]}>>1 | | = {(0000-0000)7d8a+(0000-0000)e707}>>1 | | = {(00000)7d8a+(00000)e707}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(0,0,31) |
Loop P=0 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B0=2P=20=1 subblocks, indexed b=0...B0-1=0...0. |
Subblock size=NP|P=0=N0=N/BP|(N=64,P=0)=(2p/2P)|(p=6,P=0)=2p-P|(p=6,P=0)=26-0=64. |
Butterfly n=31 of N'P=NP/2=2p-P-1=26-0-1=32 butterflies indexed by n=0...N'P-1=0...31. |
Even base index e = 2NPb = 2(64)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(32) = 64. |
Twiddle step size s = 2P+1 = 20+1 = 2. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+62] | ={x[0+62]+x[64+62]}>>1 | x[62] | ={x[62]+x[126]}>>1 | | ={f000 +f000}>>1 | | ={fe000}>>1 | | =f000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+63] | ={x[0+63]+x[64+63]}>>1 | x[63] | ={x[63]+x[127]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[64+2(31)] | = {(x[64+2(31)]-x[0+2(31)])t[(2)(31)]-(x[0+2(31)+1]-x[64+2(31)+1])t[(2)(31)+1]}>>1 | x[64+62] | = {(x[64+62]-x[0+62])t[62]-(x[0+62+1]-x[64+62+1])t[62+1]}>>1 | x[126] | = {(x[126]-x[62])t[62]-(x[63]-x[127])t[63]}>>1 | | = {(f000-f000)7f62-(0000-0000)f374}>>1 | | = {(00000)7f62-(00000)f374}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[64+2(31)+1] | = {(x[64+2(31)+1]-x[0+2(31)+1])t[(2)(31)]+(x[0+2(31)]-x[64+2(31)])t[(2)(31)+1]}>>1 | x[64+63] | = {(x[64+63]-x[0+63])t[62]+(x[0+62]-x[64+62])t[62+1]}>>1 | x[127] | = {(x[127]-x[63])t[62]+(x[62]-x[126])t[63]}>>1 | | = {(0000-0000)7f62+(f000-f000)f374}>>1 | | = {(00000)7f62+(00000)f374}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
Return to Table of Contents