64-point radix-2 fixed-point DIF FFT IV-KAT Tables (continued)
John Bryan
(P,b,n)=(1,0,0) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(16) = 32. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+0] | ={x[0+0]+x[32+0]}>>1 | x[0] | ={x[0]+x[32]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+1] | ={x[0+1]+x[32+1]}>>1 | x[1] | ={x[1]+x[33]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[32+2(0)] | = {(x[32+2(0)]-x[0+2(0)])t[(4)(0)]-(x[0+2(0)+1]-x[32+2(0)+1])t[(4)(0)+1]}>>1 | x[32+0] | = {(x[32+0]-x[0+0])t[0]-(x[0+0+1]-x[32+0+1])t[0+1]}>>1 | x[32] | = {(x[32]-x[0])t[0]-(x[1]-x[33])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[32+2(0)+1] | = {(x[32+2(0)+1]-x[0+2(0)+1])t[(4)(0)]+(x[0+2(0)]-x[32+2(0)])t[(4)(0)+1]}>>1 | x[32+1] | = {(x[32+1]-x[0+1])t[0]+(x[0+0]-x[32+0])t[0+1]}>>1 | x[33] | = {(x[33]-x[1])t[0]+(x[0]-x[32])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,0,1) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(16) = 32. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+2] | ={x[0+2]+x[32+2]}>>1 | x[2] | ={x[2]+x[34]}>>1 | | ={1000 +1000}>>1 | | ={02000}>>1 | | =1000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+3] | ={x[0+3]+x[32+3]}>>1 | x[3] | ={x[3]+x[35]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[32+2(1)] | = {(x[32+2(1)]-x[0+2(1)])t[(4)(1)]-(x[0+2(1)+1]-x[32+2(1)+1])t[(4)(1)+1]}>>1 | x[32+2] | = {(x[32+2]-x[0+2])t[4]-(x[0+2+1]-x[32+2+1])t[4+1]}>>1 | x[34] | = {(x[34]-x[2])t[4]-(x[3]-x[35])t[5]}>>1 | | = {(1000-1000)8275-(0000-0000)e707}>>1 | | = {(00000)8275-(00000)e707}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[32+2(1)+1] | = {(x[32+2(1)+1]-x[0+2(1)+1])t[(4)(1)]+(x[0+2(1)]-x[32+2(1)])t[(4)(1)+1]}>>1 | x[32+3] | = {(x[32+3]-x[0+3])t[4]+(x[0+2]-x[32+2])t[4+1]}>>1 | x[35] | = {(x[35]-x[3])t[4]+(x[2]-x[34])t[5]}>>1 | | = {(0000-0000)8275+(1000-1000)e707}>>1 | | = {(00000)8275+(00000)e707}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,0,2) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=2 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(16) = 32. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+4] | ={x[0+4]+x[32+4]}>>1 | x[4] | ={x[4]+x[36]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+5] | ={x[0+5]+x[32+5]}>>1 | x[5] | ={x[5]+x[37]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[32+2(2)] | = {(x[32+2(2)]-x[0+2(2)])t[(4)(2)]-(x[0+2(2)+1]-x[32+2(2)+1])t[(4)(2)+1]}>>1 | x[32+4] | = {(x[32+4]-x[0+4])t[8]-(x[0+4+1]-x[32+4+1])t[8+1]}>>1 | x[36] | = {(x[36]-x[4])t[8]-(x[5]-x[37])t[9]}>>1 | | = {(0000-0000)89be-(0000-0000)cf04}>>1 | | = {(00000)89be-(00000)cf04}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[32+2(2)+1] | = {(x[32+2(2)+1]-x[0+2(2)+1])t[(4)(2)]+(x[0+2(2)]-x[32+2(2)])t[(4)(2)+1]}>>1 | x[32+5] | = {(x[32+5]-x[0+5])t[8]+(x[0+4]-x[32+4])t[8+1]}>>1 | x[37] | = {(x[37]-x[5])t[8]+(x[4]-x[36])t[9]}>>1 | | = {(0000-0000)89be+(0000-0000)cf04}>>1 | | = {(00000)89be+(00000)cf04}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,0,3) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=3 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(16) = 32. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+6] | ={x[0+6]+x[32+6]}>>1 | x[6] | ={x[6]+x[38]}>>1 | | ={f000 +f000}>>1 | | ={fe000}>>1 | | =f000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+7] | ={x[0+7]+x[32+7]}>>1 | x[7] | ={x[7]+x[39]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[32+2(3)] | = {(x[32+2(3)]-x[0+2(3)])t[(4)(3)]-(x[0+2(3)+1]-x[32+2(3)+1])t[(4)(3)+1]}>>1 | x[32+6] | = {(x[32+6]-x[0+6])t[12]-(x[0+6+1]-x[32+6+1])t[12+1]}>>1 | x[38] | = {(x[38]-x[6])t[12]-(x[7]-x[39])t[13]}>>1 | | = {(f000-f000)9592-(0000-0000)b8e3}>>1 | | = {(00000)9592-(00000)b8e3}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[32+2(3)+1] | = {(x[32+2(3)+1]-x[0+2(3)+1])t[(4)(3)]+(x[0+2(3)]-x[32+2(3)])t[(4)(3)+1]}>>1 | x[32+7] | = {(x[32+7]-x[0+7])t[12]+(x[0+6]-x[32+6])t[12+1]}>>1 | x[39] | = {(x[39]-x[7])t[12]+(x[6]-x[38])t[13]}>>1 | | = {(0000-0000)9592+(f000-f000)b8e3}>>1 | | = {(00000)9592+(00000)b8e3}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,0,4) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=4 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(16) = 32. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+8] | ={x[0+8]+x[32+8]}>>1 | x[8] | ={x[8]+x[40]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+9] | ={x[0+9]+x[32+9]}>>1 | x[9] | ={x[9]+x[41]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[32+2(4)] | = {(x[32+2(4)]-x[0+2(4)])t[(4)(4)]-(x[0+2(4)+1]-x[32+2(4)+1])t[(4)(4)+1]}>>1 | x[32+8] | = {(x[32+8]-x[0+8])t[16]-(x[0+8+1]-x[32+8+1])t[16+1]}>>1 | x[40] | = {(x[40]-x[8])t[16]-(x[9]-x[41])t[17]}>>1 | | = {(0000-0000)a57d-(0000-0000)a57d}>>1 | | = {(00000)a57d-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[32+2(4)+1] | = {(x[32+2(4)+1]-x[0+2(4)+1])t[(4)(4)]+(x[0+2(4)]-x[32+2(4)])t[(4)(4)+1]}>>1 | x[32+9] | = {(x[32+9]-x[0+9])t[16]+(x[0+8]-x[32+8])t[16+1]}>>1 | x[41] | = {(x[41]-x[9])t[16]+(x[8]-x[40])t[17]}>>1 | | = {(0000-0000)a57d+(0000-0000)a57d}>>1 | | = {(00000)a57d+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,0,5) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=5 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(16) = 32. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+10] | ={x[0+10]+x[32+10]}>>1 | x[10] | ={x[10]+x[42]}>>1 | | ={1000 +1000}>>1 | | ={02000}>>1 | | =1000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+11] | ={x[0+11]+x[32+11]}>>1 | x[11] | ={x[11]+x[43]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[32+2(5)] | = {(x[32+2(5)]-x[0+2(5)])t[(4)(5)]-(x[0+2(5)+1]-x[32+2(5)+1])t[(4)(5)+1]}>>1 | x[32+10] | = {(x[32+10]-x[0+10])t[20]-(x[0+10+1]-x[32+10+1])t[20+1]}>>1 | x[42] | = {(x[42]-x[10])t[20]-(x[11]-x[43])t[21]}>>1 | | = {(1000-1000)b8e3-(0000-0000)9592}>>1 | | = {(00000)b8e3-(00000)9592}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[32+2(5)+1] | = {(x[32+2(5)+1]-x[0+2(5)+1])t[(4)(5)]+(x[0+2(5)]-x[32+2(5)])t[(4)(5)+1]}>>1 | x[32+11] | = {(x[32+11]-x[0+11])t[20]+(x[0+10]-x[32+10])t[20+1]}>>1 | x[43] | = {(x[43]-x[11])t[20]+(x[10]-x[42])t[21]}>>1 | | = {(0000-0000)b8e3+(1000-1000)9592}>>1 | | = {(00000)b8e3+(00000)9592}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,0,6) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=6 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(16) = 32. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+12] | ={x[0+12]+x[32+12]}>>1 | x[12] | ={x[12]+x[44]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+13] | ={x[0+13]+x[32+13]}>>1 | x[13] | ={x[13]+x[45]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[32+2(6)] | = {(x[32+2(6)]-x[0+2(6)])t[(4)(6)]-(x[0+2(6)+1]-x[32+2(6)+1])t[(4)(6)+1]}>>1 | x[32+12] | = {(x[32+12]-x[0+12])t[24]-(x[0+12+1]-x[32+12+1])t[24+1]}>>1 | x[44] | = {(x[44]-x[12])t[24]-(x[13]-x[45])t[25]}>>1 | | = {(0000-0000)cf04-(0000-0000)89be}>>1 | | = {(00000)cf04-(00000)89be}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[32+2(6)+1] | = {(x[32+2(6)+1]-x[0+2(6)+1])t[(4)(6)]+(x[0+2(6)]-x[32+2(6)])t[(4)(6)+1]}>>1 | x[32+13] | = {(x[32+13]-x[0+13])t[24]+(x[0+12]-x[32+12])t[24+1]}>>1 | x[45] | = {(x[45]-x[13])t[24]+(x[12]-x[44])t[25]}>>1 | | = {(0000-0000)cf04+(0000-0000)89be}>>1 | | = {(00000)cf04+(00000)89be}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,0,7) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=7 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(16) = 32. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+14] | ={x[0+14]+x[32+14]}>>1 | x[14] | ={x[14]+x[46]}>>1 | | ={f000 +f000}>>1 | | ={fe000}>>1 | | =f000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+15] | ={x[0+15]+x[32+15]}>>1 | x[15] | ={x[15]+x[47]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[32+2(7)] | = {(x[32+2(7)]-x[0+2(7)])t[(4)(7)]-(x[0+2(7)+1]-x[32+2(7)+1])t[(4)(7)+1]}>>1 | x[32+14] | = {(x[32+14]-x[0+14])t[28]-(x[0+14+1]-x[32+14+1])t[28+1]}>>1 | x[46] | = {(x[46]-x[14])t[28]-(x[15]-x[47])t[29]}>>1 | | = {(f000-f000)e707-(0000-0000)8275}>>1 | | = {(00000)e707-(00000)8275}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[32+2(7)+1] | = {(x[32+2(7)+1]-x[0+2(7)+1])t[(4)(7)]+(x[0+2(7)]-x[32+2(7)])t[(4)(7)+1]}>>1 | x[32+15] | = {(x[32+15]-x[0+15])t[28]+(x[0+14]-x[32+14])t[28+1]}>>1 | x[47] | = {(x[47]-x[15])t[28]+(x[14]-x[46])t[29]}>>1 | | = {(0000-0000)e707+(f000-f000)8275}>>1 | | = {(00000)e707+(00000)8275}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,0,8) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=8 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(16) = 32. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+16] | ={x[0+16]+x[32+16]}>>1 | x[16] | ={x[16]+x[48]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+17] | ={x[0+17]+x[32+17]}>>1 | x[17] | ={x[17]+x[49]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[32+2(8)] | = {(x[32+2(8)]-x[0+2(8)])t[(4)(8)]-(x[0+2(8)+1]-x[32+2(8)+1])t[(4)(8)+1]}>>1 | x[32+16] | = {(x[32+16]-x[0+16])t[32]-(x[0+16+1]-x[32+16+1])t[32+1]}>>1 | x[48] | = {(x[48]-x[16])t[32]-(x[17]-x[49])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[32+2(8)+1] | = {(x[32+2(8)+1]-x[0+2(8)+1])t[(4)(8)]+(x[0+2(8)]-x[32+2(8)])t[(4)(8)+1]}>>1 | x[32+17] | = {(x[32+17]-x[0+17])t[32]+(x[0+16]-x[32+16])t[32+1]}>>1 | x[49] | = {(x[49]-x[17])t[32]+(x[16]-x[48])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,0,9) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=9 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(16) = 32. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+18] | ={x[0+18]+x[32+18]}>>1 | x[18] | ={x[18]+x[50]}>>1 | | ={1000 +1000}>>1 | | ={02000}>>1 | | =1000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+19] | ={x[0+19]+x[32+19]}>>1 | x[19] | ={x[19]+x[51]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[32+2(9)] | = {(x[32+2(9)]-x[0+2(9)])t[(4)(9)]-(x[0+2(9)+1]-x[32+2(9)+1])t[(4)(9)+1]}>>1 | x[32+18] | = {(x[32+18]-x[0+18])t[36]-(x[0+18+1]-x[32+18+1])t[36+1]}>>1 | x[50] | = {(x[50]-x[18])t[36]-(x[19]-x[51])t[37]}>>1 | | = {(1000-1000)18f8-(0000-0000)8275}>>1 | | = {(00000)18f8-(00000)8275}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[32+2(9)+1] | = {(x[32+2(9)+1]-x[0+2(9)+1])t[(4)(9)]+(x[0+2(9)]-x[32+2(9)])t[(4)(9)+1]}>>1 | x[32+19] | = {(x[32+19]-x[0+19])t[36]+(x[0+18]-x[32+18])t[36+1]}>>1 | x[51] | = {(x[51]-x[19])t[36]+(x[18]-x[50])t[37]}>>1 | | = {(0000-0000)18f8+(1000-1000)8275}>>1 | | = {(00000)18f8+(00000)8275}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,0,10) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=10 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(16) = 32. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+20] | ={x[0+20]+x[32+20]}>>1 | x[20] | ={x[20]+x[52]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+21] | ={x[0+21]+x[32+21]}>>1 | x[21] | ={x[21]+x[53]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[32+2(10)] | = {(x[32+2(10)]-x[0+2(10)])t[(4)(10)]-(x[0+2(10)+1]-x[32+2(10)+1])t[(4)(10)+1]}>>1 | x[32+20] | = {(x[32+20]-x[0+20])t[40]-(x[0+20+1]-x[32+20+1])t[40+1]}>>1 | x[52] | = {(x[52]-x[20])t[40]-(x[21]-x[53])t[41]}>>1 | | = {(0000-0000)30fb-(0000-0000)89be}>>1 | | = {(00000)30fb-(00000)89be}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[32+2(10)+1] | = {(x[32+2(10)+1]-x[0+2(10)+1])t[(4)(10)]+(x[0+2(10)]-x[32+2(10)])t[(4)(10)+1]}>>1 | x[32+21] | = {(x[32+21]-x[0+21])t[40]+(x[0+20]-x[32+20])t[40+1]}>>1 | x[53] | = {(x[53]-x[21])t[40]+(x[20]-x[52])t[41]}>>1 | | = {(0000-0000)30fb+(0000-0000)89be}>>1 | | = {(00000)30fb+(00000)89be}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,0,11) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=11 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(16) = 32. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+22] | ={x[0+22]+x[32+22]}>>1 | x[22] | ={x[22]+x[54]}>>1 | | ={f000 +f000}>>1 | | ={fe000}>>1 | | =f000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+23] | ={x[0+23]+x[32+23]}>>1 | x[23] | ={x[23]+x[55]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[32+2(11)] | = {(x[32+2(11)]-x[0+2(11)])t[(4)(11)]-(x[0+2(11)+1]-x[32+2(11)+1])t[(4)(11)+1]}>>1 | x[32+22] | = {(x[32+22]-x[0+22])t[44]-(x[0+22+1]-x[32+22+1])t[44+1]}>>1 | x[54] | = {(x[54]-x[22])t[44]-(x[23]-x[55])t[45]}>>1 | | = {(f000-f000)471c-(0000-0000)9592}>>1 | | = {(00000)471c-(00000)9592}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[32+2(11)+1] | = {(x[32+2(11)+1]-x[0+2(11)+1])t[(4)(11)]+(x[0+2(11)]-x[32+2(11)])t[(4)(11)+1]}>>1 | x[32+23] | = {(x[32+23]-x[0+23])t[44]+(x[0+22]-x[32+22])t[44+1]}>>1 | x[55] | = {(x[55]-x[23])t[44]+(x[22]-x[54])t[45]}>>1 | | = {(0000-0000)471c+(f000-f000)9592}>>1 | | = {(00000)471c+(00000)9592}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,0,12) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=12 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(16) = 32. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+24] | ={x[0+24]+x[32+24]}>>1 | x[24] | ={x[24]+x[56]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+25] | ={x[0+25]+x[32+25]}>>1 | x[25] | ={x[25]+x[57]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[32+2(12)] | = {(x[32+2(12)]-x[0+2(12)])t[(4)(12)]-(x[0+2(12)+1]-x[32+2(12)+1])t[(4)(12)+1]}>>1 | x[32+24] | = {(x[32+24]-x[0+24])t[48]-(x[0+24+1]-x[32+24+1])t[48+1]}>>1 | x[56] | = {(x[56]-x[24])t[48]-(x[25]-x[57])t[49]}>>1 | | = {(0000-0000)5a82-(0000-0000)a57d}>>1 | | = {(00000)5a82-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[32+2(12)+1] | = {(x[32+2(12)+1]-x[0+2(12)+1])t[(4)(12)]+(x[0+2(12)]-x[32+2(12)])t[(4)(12)+1]}>>1 | x[32+25] | = {(x[32+25]-x[0+25])t[48]+(x[0+24]-x[32+24])t[48+1]}>>1 | x[57] | = {(x[57]-x[25])t[48]+(x[24]-x[56])t[49]}>>1 | | = {(0000-0000)5a82+(0000-0000)a57d}>>1 | | = {(00000)5a82+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,0,13) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=13 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(16) = 32. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+26] | ={x[0+26]+x[32+26]}>>1 | x[26] | ={x[26]+x[58]}>>1 | | ={1000 +1000}>>1 | | ={02000}>>1 | | =1000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+27] | ={x[0+27]+x[32+27]}>>1 | x[27] | ={x[27]+x[59]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[32+2(13)] | = {(x[32+2(13)]-x[0+2(13)])t[(4)(13)]-(x[0+2(13)+1]-x[32+2(13)+1])t[(4)(13)+1]}>>1 | x[32+26] | = {(x[32+26]-x[0+26])t[52]-(x[0+26+1]-x[32+26+1])t[52+1]}>>1 | x[58] | = {(x[58]-x[26])t[52]-(x[27]-x[59])t[53]}>>1 | | = {(1000-1000)6a6d-(0000-0000)b8e3}>>1 | | = {(00000)6a6d-(00000)b8e3}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[32+2(13)+1] | = {(x[32+2(13)+1]-x[0+2(13)+1])t[(4)(13)]+(x[0+2(13)]-x[32+2(13)])t[(4)(13)+1]}>>1 | x[32+27] | = {(x[32+27]-x[0+27])t[52]+(x[0+26]-x[32+26])t[52+1]}>>1 | x[59] | = {(x[59]-x[27])t[52]+(x[26]-x[58])t[53]}>>1 | | = {(0000-0000)6a6d+(1000-1000)b8e3}>>1 | | = {(00000)6a6d+(00000)b8e3}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,0,14) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=14 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(16) = 32. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+28] | ={x[0+28]+x[32+28]}>>1 | x[28] | ={x[28]+x[60]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+29] | ={x[0+29]+x[32+29]}>>1 | x[29] | ={x[29]+x[61]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[32+2(14)] | = {(x[32+2(14)]-x[0+2(14)])t[(4)(14)]-(x[0+2(14)+1]-x[32+2(14)+1])t[(4)(14)+1]}>>1 | x[32+28] | = {(x[32+28]-x[0+28])t[56]-(x[0+28+1]-x[32+28+1])t[56+1]}>>1 | x[60] | = {(x[60]-x[28])t[56]-(x[29]-x[61])t[57]}>>1 | | = {(0000-0000)7641-(0000-0000)cf04}>>1 | | = {(00000)7641-(00000)cf04}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[32+2(14)+1] | = {(x[32+2(14)+1]-x[0+2(14)+1])t[(4)(14)]+(x[0+2(14)]-x[32+2(14)])t[(4)(14)+1]}>>1 | x[32+29] | = {(x[32+29]-x[0+29])t[56]+(x[0+28]-x[32+28])t[56+1]}>>1 | x[61] | = {(x[61]-x[29])t[56]+(x[28]-x[60])t[57]}>>1 | | = {(0000-0000)7641+(0000-0000)cf04}>>1 | | = {(00000)7641+(00000)cf04}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,0,15) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=15 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(16) = 32. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+30] | ={x[0+30]+x[32+30]}>>1 | x[30] | ={x[30]+x[62]}>>1 | | ={f000 +f000}>>1 | | ={fe000}>>1 | | =f000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+31] | ={x[0+31]+x[32+31]}>>1 | x[31] | ={x[31]+x[63]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[32+2(15)] | = {(x[32+2(15)]-x[0+2(15)])t[(4)(15)]-(x[0+2(15)+1]-x[32+2(15)+1])t[(4)(15)+1]}>>1 | x[32+30] | = {(x[32+30]-x[0+30])t[60]-(x[0+30+1]-x[32+30+1])t[60+1]}>>1 | x[62] | = {(x[62]-x[30])t[60]-(x[31]-x[63])t[61]}>>1 | | = {(f000-f000)7d8a-(0000-0000)e707}>>1 | | = {(00000)7d8a-(00000)e707}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[32+2(15)+1] | = {(x[32+2(15)+1]-x[0+2(15)+1])t[(4)(15)]+(x[0+2(15)]-x[32+2(15)])t[(4)(15)+1]}>>1 | x[32+31] | = {(x[32+31]-x[0+31])t[60]+(x[0+30]-x[32+30])t[60+1]}>>1 | x[63] | = {(x[63]-x[31])t[60]+(x[30]-x[62])t[61]}>>1 | | = {(0000-0000)7d8a+(f000-f000)e707}>>1 | | = {(00000)7d8a+(00000)e707}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,1,0) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(1) = 64. |
Odd base index o = e + 2N'P = 64 + 2(16) = 96. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+0] | ={x[64+0]+x[96+0]}>>1 | x[64] | ={x[64]+x[96]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+1] | ={x[64+1]+x[96+1]}>>1 | x[65] | ={x[65]+x[97]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[96+2(0)] | = {(x[96+2(0)]-x[64+2(0)])t[(4)(0)]-(x[64+2(0)+1]-x[96+2(0)+1])t[(4)(0)+1]}>>1 | x[96+0] | = {(x[96+0]-x[64+0])t[0]-(x[64+0+1]-x[96+0+1])t[0+1]}>>1 | x[96] | = {(x[96]-x[64])t[0]-(x[65]-x[97])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[96+2(0)+1] | = {(x[96+2(0)+1]-x[64+2(0)+1])t[(4)(0)]+(x[64+2(0)]-x[96+2(0)])t[(4)(0)+1]}>>1 | x[96+1] | = {(x[96+1]-x[64+1])t[0]+(x[64+0]-x[96+0])t[0+1]}>>1 | x[97] | = {(x[97]-x[65])t[0]+(x[64]-x[96])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,1,1) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(1) = 64. |
Odd base index o = e + 2N'P = 64 + 2(16) = 96. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+2] | ={x[64+2]+x[96+2]}>>1 | x[66] | ={x[66]+x[98]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+3] | ={x[64+3]+x[96+3]}>>1 | x[67] | ={x[67]+x[99]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[96+2(1)] | = {(x[96+2(1)]-x[64+2(1)])t[(4)(1)]-(x[64+2(1)+1]-x[96+2(1)+1])t[(4)(1)+1]}>>1 | x[96+2] | = {(x[96+2]-x[64+2])t[4]-(x[64+2+1]-x[96+2+1])t[4+1]}>>1 | x[98] | = {(x[98]-x[66])t[4]-(x[67]-x[99])t[5]}>>1 | | = {(0000-0000)8275-(0000-0000)e707}>>1 | | = {(00000)8275-(00000)e707}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[96+2(1)+1] | = {(x[96+2(1)+1]-x[64+2(1)+1])t[(4)(1)]+(x[64+2(1)]-x[96+2(1)])t[(4)(1)+1]}>>1 | x[96+3] | = {(x[96+3]-x[64+3])t[4]+(x[64+2]-x[96+2])t[4+1]}>>1 | x[99] | = {(x[99]-x[67])t[4]+(x[66]-x[98])t[5]}>>1 | | = {(0000-0000)8275+(0000-0000)e707}>>1 | | = {(00000)8275+(00000)e707}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,1,2) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=2 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(1) = 64. |
Odd base index o = e + 2N'P = 64 + 2(16) = 96. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+4] | ={x[64+4]+x[96+4]}>>1 | x[68] | ={x[68]+x[100]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+5] | ={x[64+5]+x[96+5]}>>1 | x[69] | ={x[69]+x[101]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[96+2(2)] | = {(x[96+2(2)]-x[64+2(2)])t[(4)(2)]-(x[64+2(2)+1]-x[96+2(2)+1])t[(4)(2)+1]}>>1 | x[96+4] | = {(x[96+4]-x[64+4])t[8]-(x[64+4+1]-x[96+4+1])t[8+1]}>>1 | x[100] | = {(x[100]-x[68])t[8]-(x[69]-x[101])t[9]}>>1 | | = {(0000-0000)89be-(0000-0000)cf04}>>1 | | = {(00000)89be-(00000)cf04}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[96+2(2)+1] | = {(x[96+2(2)+1]-x[64+2(2)+1])t[(4)(2)]+(x[64+2(2)]-x[96+2(2)])t[(4)(2)+1]}>>1 | x[96+5] | = {(x[96+5]-x[64+5])t[8]+(x[64+4]-x[96+4])t[8+1]}>>1 | x[101] | = {(x[101]-x[69])t[8]+(x[68]-x[100])t[9]}>>1 | | = {(0000-0000)89be+(0000-0000)cf04}>>1 | | = {(00000)89be+(00000)cf04}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,1,3) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=3 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(1) = 64. |
Odd base index o = e + 2N'P = 64 + 2(16) = 96. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+6] | ={x[64+6]+x[96+6]}>>1 | x[70] | ={x[70]+x[102]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+7] | ={x[64+7]+x[96+7]}>>1 | x[71] | ={x[71]+x[103]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[96+2(3)] | = {(x[96+2(3)]-x[64+2(3)])t[(4)(3)]-(x[64+2(3)+1]-x[96+2(3)+1])t[(4)(3)+1]}>>1 | x[96+6] | = {(x[96+6]-x[64+6])t[12]-(x[64+6+1]-x[96+6+1])t[12+1]}>>1 | x[102] | = {(x[102]-x[70])t[12]-(x[71]-x[103])t[13]}>>1 | | = {(0000-0000)9592-(0000-0000)b8e3}>>1 | | = {(00000)9592-(00000)b8e3}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[96+2(3)+1] | = {(x[96+2(3)+1]-x[64+2(3)+1])t[(4)(3)]+(x[64+2(3)]-x[96+2(3)])t[(4)(3)+1]}>>1 | x[96+7] | = {(x[96+7]-x[64+7])t[12]+(x[64+6]-x[96+6])t[12+1]}>>1 | x[103] | = {(x[103]-x[71])t[12]+(x[70]-x[102])t[13]}>>1 | | = {(0000-0000)9592+(0000-0000)b8e3}>>1 | | = {(00000)9592+(00000)b8e3}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,1,4) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=4 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(1) = 64. |
Odd base index o = e + 2N'P = 64 + 2(16) = 96. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+8] | ={x[64+8]+x[96+8]}>>1 | x[72] | ={x[72]+x[104]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+9] | ={x[64+9]+x[96+9]}>>1 | x[73] | ={x[73]+x[105]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[96+2(4)] | = {(x[96+2(4)]-x[64+2(4)])t[(4)(4)]-(x[64+2(4)+1]-x[96+2(4)+1])t[(4)(4)+1]}>>1 | x[96+8] | = {(x[96+8]-x[64+8])t[16]-(x[64+8+1]-x[96+8+1])t[16+1]}>>1 | x[104] | = {(x[104]-x[72])t[16]-(x[73]-x[105])t[17]}>>1 | | = {(0000-0000)a57d-(0000-0000)a57d}>>1 | | = {(00000)a57d-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[96+2(4)+1] | = {(x[96+2(4)+1]-x[64+2(4)+1])t[(4)(4)]+(x[64+2(4)]-x[96+2(4)])t[(4)(4)+1]}>>1 | x[96+9] | = {(x[96+9]-x[64+9])t[16]+(x[64+8]-x[96+8])t[16+1]}>>1 | x[105] | = {(x[105]-x[73])t[16]+(x[72]-x[104])t[17]}>>1 | | = {(0000-0000)a57d+(0000-0000)a57d}>>1 | | = {(00000)a57d+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,1,5) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=5 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(1) = 64. |
Odd base index o = e + 2N'P = 64 + 2(16) = 96. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+10] | ={x[64+10]+x[96+10]}>>1 | x[74] | ={x[74]+x[106]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+11] | ={x[64+11]+x[96+11]}>>1 | x[75] | ={x[75]+x[107]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[96+2(5)] | = {(x[96+2(5)]-x[64+2(5)])t[(4)(5)]-(x[64+2(5)+1]-x[96+2(5)+1])t[(4)(5)+1]}>>1 | x[96+10] | = {(x[96+10]-x[64+10])t[20]-(x[64+10+1]-x[96+10+1])t[20+1]}>>1 | x[106] | = {(x[106]-x[74])t[20]-(x[75]-x[107])t[21]}>>1 | | = {(0000-0000)b8e3-(0000-0000)9592}>>1 | | = {(00000)b8e3-(00000)9592}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[96+2(5)+1] | = {(x[96+2(5)+1]-x[64+2(5)+1])t[(4)(5)]+(x[64+2(5)]-x[96+2(5)])t[(4)(5)+1]}>>1 | x[96+11] | = {(x[96+11]-x[64+11])t[20]+(x[64+10]-x[96+10])t[20+1]}>>1 | x[107] | = {(x[107]-x[75])t[20]+(x[74]-x[106])t[21]}>>1 | | = {(0000-0000)b8e3+(0000-0000)9592}>>1 | | = {(00000)b8e3+(00000)9592}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,1,6) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=6 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(1) = 64. |
Odd base index o = e + 2N'P = 64 + 2(16) = 96. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+12] | ={x[64+12]+x[96+12]}>>1 | x[76] | ={x[76]+x[108]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+13] | ={x[64+13]+x[96+13]}>>1 | x[77] | ={x[77]+x[109]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[96+2(6)] | = {(x[96+2(6)]-x[64+2(6)])t[(4)(6)]-(x[64+2(6)+1]-x[96+2(6)+1])t[(4)(6)+1]}>>1 | x[96+12] | = {(x[96+12]-x[64+12])t[24]-(x[64+12+1]-x[96+12+1])t[24+1]}>>1 | x[108] | = {(x[108]-x[76])t[24]-(x[77]-x[109])t[25]}>>1 | | = {(0000-0000)cf04-(0000-0000)89be}>>1 | | = {(00000)cf04-(00000)89be}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[96+2(6)+1] | = {(x[96+2(6)+1]-x[64+2(6)+1])t[(4)(6)]+(x[64+2(6)]-x[96+2(6)])t[(4)(6)+1]}>>1 | x[96+13] | = {(x[96+13]-x[64+13])t[24]+(x[64+12]-x[96+12])t[24+1]}>>1 | x[109] | = {(x[109]-x[77])t[24]+(x[76]-x[108])t[25]}>>1 | | = {(0000-0000)cf04+(0000-0000)89be}>>1 | | = {(00000)cf04+(00000)89be}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,1,7) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=7 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(1) = 64. |
Odd base index o = e + 2N'P = 64 + 2(16) = 96. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+14] | ={x[64+14]+x[96+14]}>>1 | x[78] | ={x[78]+x[110]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+15] | ={x[64+15]+x[96+15]}>>1 | x[79] | ={x[79]+x[111]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[96+2(7)] | = {(x[96+2(7)]-x[64+2(7)])t[(4)(7)]-(x[64+2(7)+1]-x[96+2(7)+1])t[(4)(7)+1]}>>1 | x[96+14] | = {(x[96+14]-x[64+14])t[28]-(x[64+14+1]-x[96+14+1])t[28+1]}>>1 | x[110] | = {(x[110]-x[78])t[28]-(x[79]-x[111])t[29]}>>1 | | = {(0000-0000)e707-(0000-0000)8275}>>1 | | = {(00000)e707-(00000)8275}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[96+2(7)+1] | = {(x[96+2(7)+1]-x[64+2(7)+1])t[(4)(7)]+(x[64+2(7)]-x[96+2(7)])t[(4)(7)+1]}>>1 | x[96+15] | = {(x[96+15]-x[64+15])t[28]+(x[64+14]-x[96+14])t[28+1]}>>1 | x[111] | = {(x[111]-x[79])t[28]+(x[78]-x[110])t[29]}>>1 | | = {(0000-0000)e707+(0000-0000)8275}>>1 | | = {(00000)e707+(00000)8275}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,1,8) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=8 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(1) = 64. |
Odd base index o = e + 2N'P = 64 + 2(16) = 96. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+16] | ={x[64+16]+x[96+16]}>>1 | x[80] | ={x[80]+x[112]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+17] | ={x[64+17]+x[96+17]}>>1 | x[81] | ={x[81]+x[113]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[96+2(8)] | = {(x[96+2(8)]-x[64+2(8)])t[(4)(8)]-(x[64+2(8)+1]-x[96+2(8)+1])t[(4)(8)+1]}>>1 | x[96+16] | = {(x[96+16]-x[64+16])t[32]-(x[64+16+1]-x[96+16+1])t[32+1]}>>1 | x[112] | = {(x[112]-x[80])t[32]-(x[81]-x[113])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[96+2(8)+1] | = {(x[96+2(8)+1]-x[64+2(8)+1])t[(4)(8)]+(x[64+2(8)]-x[96+2(8)])t[(4)(8)+1]}>>1 | x[96+17] | = {(x[96+17]-x[64+17])t[32]+(x[64+16]-x[96+16])t[32+1]}>>1 | x[113] | = {(x[113]-x[81])t[32]+(x[80]-x[112])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,1,9) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=9 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(1) = 64. |
Odd base index o = e + 2N'P = 64 + 2(16) = 96. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+18] | ={x[64+18]+x[96+18]}>>1 | x[82] | ={x[82]+x[114]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+19] | ={x[64+19]+x[96+19]}>>1 | x[83] | ={x[83]+x[115]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[96+2(9)] | = {(x[96+2(9)]-x[64+2(9)])t[(4)(9)]-(x[64+2(9)+1]-x[96+2(9)+1])t[(4)(9)+1]}>>1 | x[96+18] | = {(x[96+18]-x[64+18])t[36]-(x[64+18+1]-x[96+18+1])t[36+1]}>>1 | x[114] | = {(x[114]-x[82])t[36]-(x[83]-x[115])t[37]}>>1 | | = {(0000-0000)18f8-(0000-0000)8275}>>1 | | = {(00000)18f8-(00000)8275}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[96+2(9)+1] | = {(x[96+2(9)+1]-x[64+2(9)+1])t[(4)(9)]+(x[64+2(9)]-x[96+2(9)])t[(4)(9)+1]}>>1 | x[96+19] | = {(x[96+19]-x[64+19])t[36]+(x[64+18]-x[96+18])t[36+1]}>>1 | x[115] | = {(x[115]-x[83])t[36]+(x[82]-x[114])t[37]}>>1 | | = {(0000-0000)18f8+(0000-0000)8275}>>1 | | = {(00000)18f8+(00000)8275}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,1,10) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=10 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(1) = 64. |
Odd base index o = e + 2N'P = 64 + 2(16) = 96. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+20] | ={x[64+20]+x[96+20]}>>1 | x[84] | ={x[84]+x[116]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+21] | ={x[64+21]+x[96+21]}>>1 | x[85] | ={x[85]+x[117]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[96+2(10)] | = {(x[96+2(10)]-x[64+2(10)])t[(4)(10)]-(x[64+2(10)+1]-x[96+2(10)+1])t[(4)(10)+1]}>>1 | x[96+20] | = {(x[96+20]-x[64+20])t[40]-(x[64+20+1]-x[96+20+1])t[40+1]}>>1 | x[116] | = {(x[116]-x[84])t[40]-(x[85]-x[117])t[41]}>>1 | | = {(0000-0000)30fb-(0000-0000)89be}>>1 | | = {(00000)30fb-(00000)89be}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[96+2(10)+1] | = {(x[96+2(10)+1]-x[64+2(10)+1])t[(4)(10)]+(x[64+2(10)]-x[96+2(10)])t[(4)(10)+1]}>>1 | x[96+21] | = {(x[96+21]-x[64+21])t[40]+(x[64+20]-x[96+20])t[40+1]}>>1 | x[117] | = {(x[117]-x[85])t[40]+(x[84]-x[116])t[41]}>>1 | | = {(0000-0000)30fb+(0000-0000)89be}>>1 | | = {(00000)30fb+(00000)89be}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,1,11) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=11 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(1) = 64. |
Odd base index o = e + 2N'P = 64 + 2(16) = 96. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+22] | ={x[64+22]+x[96+22]}>>1 | x[86] | ={x[86]+x[118]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+23] | ={x[64+23]+x[96+23]}>>1 | x[87] | ={x[87]+x[119]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[96+2(11)] | = {(x[96+2(11)]-x[64+2(11)])t[(4)(11)]-(x[64+2(11)+1]-x[96+2(11)+1])t[(4)(11)+1]}>>1 | x[96+22] | = {(x[96+22]-x[64+22])t[44]-(x[64+22+1]-x[96+22+1])t[44+1]}>>1 | x[118] | = {(x[118]-x[86])t[44]-(x[87]-x[119])t[45]}>>1 | | = {(0000-0000)471c-(0000-0000)9592}>>1 | | = {(00000)471c-(00000)9592}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[96+2(11)+1] | = {(x[96+2(11)+1]-x[64+2(11)+1])t[(4)(11)]+(x[64+2(11)]-x[96+2(11)])t[(4)(11)+1]}>>1 | x[96+23] | = {(x[96+23]-x[64+23])t[44]+(x[64+22]-x[96+22])t[44+1]}>>1 | x[119] | = {(x[119]-x[87])t[44]+(x[86]-x[118])t[45]}>>1 | | = {(0000-0000)471c+(0000-0000)9592}>>1 | | = {(00000)471c+(00000)9592}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,1,12) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=12 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(1) = 64. |
Odd base index o = e + 2N'P = 64 + 2(16) = 96. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+24] | ={x[64+24]+x[96+24]}>>1 | x[88] | ={x[88]+x[120]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+25] | ={x[64+25]+x[96+25]}>>1 | x[89] | ={x[89]+x[121]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[96+2(12)] | = {(x[96+2(12)]-x[64+2(12)])t[(4)(12)]-(x[64+2(12)+1]-x[96+2(12)+1])t[(4)(12)+1]}>>1 | x[96+24] | = {(x[96+24]-x[64+24])t[48]-(x[64+24+1]-x[96+24+1])t[48+1]}>>1 | x[120] | = {(x[120]-x[88])t[48]-(x[89]-x[121])t[49]}>>1 | | = {(0000-0000)5a82-(0000-0000)a57d}>>1 | | = {(00000)5a82-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[96+2(12)+1] | = {(x[96+2(12)+1]-x[64+2(12)+1])t[(4)(12)]+(x[64+2(12)]-x[96+2(12)])t[(4)(12)+1]}>>1 | x[96+25] | = {(x[96+25]-x[64+25])t[48]+(x[64+24]-x[96+24])t[48+1]}>>1 | x[121] | = {(x[121]-x[89])t[48]+(x[88]-x[120])t[49]}>>1 | | = {(0000-0000)5a82+(0000-0000)a57d}>>1 | | = {(00000)5a82+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,1,13) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=13 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(1) = 64. |
Odd base index o = e + 2N'P = 64 + 2(16) = 96. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+26] | ={x[64+26]+x[96+26]}>>1 | x[90] | ={x[90]+x[122]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+27] | ={x[64+27]+x[96+27]}>>1 | x[91] | ={x[91]+x[123]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[96+2(13)] | = {(x[96+2(13)]-x[64+2(13)])t[(4)(13)]-(x[64+2(13)+1]-x[96+2(13)+1])t[(4)(13)+1]}>>1 | x[96+26] | = {(x[96+26]-x[64+26])t[52]-(x[64+26+1]-x[96+26+1])t[52+1]}>>1 | x[122] | = {(x[122]-x[90])t[52]-(x[91]-x[123])t[53]}>>1 | | = {(0000-0000)6a6d-(0000-0000)b8e3}>>1 | | = {(00000)6a6d-(00000)b8e3}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[96+2(13)+1] | = {(x[96+2(13)+1]-x[64+2(13)+1])t[(4)(13)]+(x[64+2(13)]-x[96+2(13)])t[(4)(13)+1]}>>1 | x[96+27] | = {(x[96+27]-x[64+27])t[52]+(x[64+26]-x[96+26])t[52+1]}>>1 | x[123] | = {(x[123]-x[91])t[52]+(x[90]-x[122])t[53]}>>1 | | = {(0000-0000)6a6d+(0000-0000)b8e3}>>1 | | = {(00000)6a6d+(00000)b8e3}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,1,14) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=14 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(1) = 64. |
Odd base index o = e + 2N'P = 64 + 2(16) = 96. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+28] | ={x[64+28]+x[96+28]}>>1 | x[92] | ={x[92]+x[124]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+29] | ={x[64+29]+x[96+29]}>>1 | x[93] | ={x[93]+x[125]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[96+2(14)] | = {(x[96+2(14)]-x[64+2(14)])t[(4)(14)]-(x[64+2(14)+1]-x[96+2(14)+1])t[(4)(14)+1]}>>1 | x[96+28] | = {(x[96+28]-x[64+28])t[56]-(x[64+28+1]-x[96+28+1])t[56+1]}>>1 | x[124] | = {(x[124]-x[92])t[56]-(x[93]-x[125])t[57]}>>1 | | = {(0000-0000)7641-(0000-0000)cf04}>>1 | | = {(00000)7641-(00000)cf04}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[96+2(14)+1] | = {(x[96+2(14)+1]-x[64+2(14)+1])t[(4)(14)]+(x[64+2(14)]-x[96+2(14)])t[(4)(14)+1]}>>1 | x[96+29] | = {(x[96+29]-x[64+29])t[56]+(x[64+28]-x[96+28])t[56+1]}>>1 | x[125] | = {(x[125]-x[93])t[56]+(x[92]-x[124])t[57]}>>1 | | = {(0000-0000)7641+(0000-0000)cf04}>>1 | | = {(00000)7641+(00000)cf04}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(1,1,15) |
Loop P=1 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B1=2P=21=2 subblocks, indexed b=0...B1-1=0...1. |
Subblock size=NP|P=1=N1=N/BP|(N=64,P=1)=(2p/2P)|(p=6,P=1)=2p-P|(p=6,P=1)=26-1=32. |
Butterfly n=15 of N'P=NP/2=2p-P-1=26-1-1=16 butterflies indexed by n=0...N'P-1=0...15. |
Even base index e = 2NPb = 2(32)(1) = 64. |
Odd base index o = e + 2N'P = 64 + 2(16) = 96. |
Twiddle step size s = 2P+1 = 21+1 = 4. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+30] | ={x[64+30]+x[96+30]}>>1 | x[94] | ={x[94]+x[126]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+31] | ={x[64+31]+x[96+31]}>>1 | x[95] | ={x[95]+x[127]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[96+2(15)] | = {(x[96+2(15)]-x[64+2(15)])t[(4)(15)]-(x[64+2(15)+1]-x[96+2(15)+1])t[(4)(15)+1]}>>1 | x[96+30] | = {(x[96+30]-x[64+30])t[60]-(x[64+30+1]-x[96+30+1])t[60+1]}>>1 | x[126] | = {(x[126]-x[94])t[60]-(x[95]-x[127])t[61]}>>1 | | = {(0000-0000)7d8a-(0000-0000)e707}>>1 | | = {(00000)7d8a-(00000)e707}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[96+2(15)+1] | = {(x[96+2(15)+1]-x[64+2(15)+1])t[(4)(15)]+(x[64+2(15)]-x[96+2(15)])t[(4)(15)+1]}>>1 | x[96+31] | = {(x[96+31]-x[64+31])t[60]+(x[64+30]-x[96+30])t[60+1]}>>1 | x[127] | = {(x[127]-x[95])t[60]+(x[94]-x[126])t[61]}>>1 | | = {(0000-0000)7d8a+(0000-0000)e707}>>1 | | = {(00000)7d8a+(00000)e707}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
Return to Table of Contents