64-point radix-2 fixed-point DIF FFT IV-KAT Tables (continued)
John Bryan
(P,b,n)=(3,0,0) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(4) = 8. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+0] | ={x[0+0]+x[8+0]}>>1 | x[0] | ={x[0]+x[8]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+1] | ={x[0+1]+x[8+1]}>>1 | x[1] | ={x[1]+x[9]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[8+2(0)] | = {(x[8+2(0)]-x[0+2(0)])t[(16)(0)]-(x[0+2(0)+1]-x[8+2(0)+1])t[(16)(0)+1]}>>1 | x[8+0] | = {(x[8+0]-x[0+0])t[0]-(x[0+0+1]-x[8+0+1])t[0+1]}>>1 | x[8] | = {(x[8]-x[0])t[0]-(x[1]-x[9])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[8+2(0)+1] | = {(x[8+2(0)+1]-x[0+2(0)+1])t[(16)(0)]+(x[0+2(0)]-x[8+2(0)])t[(16)(0)+1]}>>1 | x[8+1] | = {(x[8+1]-x[0+1])t[0]+(x[0+0]-x[8+0])t[0+1]}>>1 | x[9] | = {(x[9]-x[1])t[0]+(x[0]-x[8])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,0,1) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(4) = 8. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+2] | ={x[0+2]+x[8+2]}>>1 | x[2] | ={x[2]+x[10]}>>1 | | ={1000 +1000}>>1 | | ={02000}>>1 | | =1000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+3] | ={x[0+3]+x[8+3]}>>1 | x[3] | ={x[3]+x[11]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[8+2(1)] | = {(x[8+2(1)]-x[0+2(1)])t[(16)(1)]-(x[0+2(1)+1]-x[8+2(1)+1])t[(16)(1)+1]}>>1 | x[8+2] | = {(x[8+2]-x[0+2])t[16]-(x[0+2+1]-x[8+2+1])t[16+1]}>>1 | x[10] | = {(x[10]-x[2])t[16]-(x[3]-x[11])t[17]}>>1 | | = {(1000-1000)a57d-(0000-0000)a57d}>>1 | | = {(00000)a57d-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[8+2(1)+1] | = {(x[8+2(1)+1]-x[0+2(1)+1])t[(16)(1)]+(x[0+2(1)]-x[8+2(1)])t[(16)(1)+1]}>>1 | x[8+3] | = {(x[8+3]-x[0+3])t[16]+(x[0+2]-x[8+2])t[16+1]}>>1 | x[11] | = {(x[11]-x[3])t[16]+(x[2]-x[10])t[17]}>>1 | | = {(0000-0000)a57d+(1000-1000)a57d}>>1 | | = {(00000)a57d+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,0,2) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=2 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(4) = 8. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+4] | ={x[0+4]+x[8+4]}>>1 | x[4] | ={x[4]+x[12]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+5] | ={x[0+5]+x[8+5]}>>1 | x[5] | ={x[5]+x[13]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[8+2(2)] | = {(x[8+2(2)]-x[0+2(2)])t[(16)(2)]-(x[0+2(2)+1]-x[8+2(2)+1])t[(16)(2)+1]}>>1 | x[8+4] | = {(x[8+4]-x[0+4])t[32]-(x[0+4+1]-x[8+4+1])t[32+1]}>>1 | x[12] | = {(x[12]-x[4])t[32]-(x[5]-x[13])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[8+2(2)+1] | = {(x[8+2(2)+1]-x[0+2(2)+1])t[(16)(2)]+(x[0+2(2)]-x[8+2(2)])t[(16)(2)+1]}>>1 | x[8+5] | = {(x[8+5]-x[0+5])t[32]+(x[0+4]-x[8+4])t[32+1]}>>1 | x[13] | = {(x[13]-x[5])t[32]+(x[4]-x[12])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,0,3) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=3 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(4) = 8. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+6] | ={x[0+6]+x[8+6]}>>1 | x[6] | ={x[6]+x[14]}>>1 | | ={f000 +f000}>>1 | | ={fe000}>>1 | | =f000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+7] | ={x[0+7]+x[8+7]}>>1 | x[7] | ={x[7]+x[15]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[8+2(3)] | = {(x[8+2(3)]-x[0+2(3)])t[(16)(3)]-(x[0+2(3)+1]-x[8+2(3)+1])t[(16)(3)+1]}>>1 | x[8+6] | = {(x[8+6]-x[0+6])t[48]-(x[0+6+1]-x[8+6+1])t[48+1]}>>1 | x[14] | = {(x[14]-x[6])t[48]-(x[7]-x[15])t[49]}>>1 | | = {(f000-f000)5a82-(0000-0000)a57d}>>1 | | = {(00000)5a82-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[8+2(3)+1] | = {(x[8+2(3)+1]-x[0+2(3)+1])t[(16)(3)]+(x[0+2(3)]-x[8+2(3)])t[(16)(3)+1]}>>1 | x[8+7] | = {(x[8+7]-x[0+7])t[48]+(x[0+6]-x[8+6])t[48+1]}>>1 | x[15] | = {(x[15]-x[7])t[48]+(x[6]-x[14])t[49]}>>1 | | = {(0000-0000)5a82+(f000-f000)a57d}>>1 | | = {(00000)5a82+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,1,0) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(1) = 16. |
Odd base index o = e + 2N'P = 16 + 2(4) = 24. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[16+0] | ={x[16+0]+x[24+0]}>>1 | x[16] | ={x[16]+x[24]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[16+1] | ={x[16+1]+x[24+1]}>>1 | x[17] | ={x[17]+x[25]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[24+2(0)] | = {(x[24+2(0)]-x[16+2(0)])t[(16)(0)]-(x[16+2(0)+1]-x[24+2(0)+1])t[(16)(0)+1]}>>1 | x[24+0] | = {(x[24+0]-x[16+0])t[0]-(x[16+0+1]-x[24+0+1])t[0+1]}>>1 | x[24] | = {(x[24]-x[16])t[0]-(x[17]-x[25])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[24+2(0)+1] | = {(x[24+2(0)+1]-x[16+2(0)+1])t[(16)(0)]+(x[16+2(0)]-x[24+2(0)])t[(16)(0)+1]}>>1 | x[24+1] | = {(x[24+1]-x[16+1])t[0]+(x[16+0]-x[24+0])t[0+1]}>>1 | x[25] | = {(x[25]-x[17])t[0]+(x[16]-x[24])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,1,1) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(1) = 16. |
Odd base index o = e + 2N'P = 16 + 2(4) = 24. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[16+2] | ={x[16+2]+x[24+2]}>>1 | x[18] | ={x[18]+x[26]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[16+3] | ={x[16+3]+x[24+3]}>>1 | x[19] | ={x[19]+x[27]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[24+2(1)] | = {(x[24+2(1)]-x[16+2(1)])t[(16)(1)]-(x[16+2(1)+1]-x[24+2(1)+1])t[(16)(1)+1]}>>1 | x[24+2] | = {(x[24+2]-x[16+2])t[16]-(x[16+2+1]-x[24+2+1])t[16+1]}>>1 | x[26] | = {(x[26]-x[18])t[16]-(x[19]-x[27])t[17]}>>1 | | = {(0000-0000)a57d-(0000-0000)a57d}>>1 | | = {(00000)a57d-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[24+2(1)+1] | = {(x[24+2(1)+1]-x[16+2(1)+1])t[(16)(1)]+(x[16+2(1)]-x[24+2(1)])t[(16)(1)+1]}>>1 | x[24+3] | = {(x[24+3]-x[16+3])t[16]+(x[16+2]-x[24+2])t[16+1]}>>1 | x[27] | = {(x[27]-x[19])t[16]+(x[18]-x[26])t[17]}>>1 | | = {(0000-0000)a57d+(0000-0000)a57d}>>1 | | = {(00000)a57d+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,1,2) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=2 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(1) = 16. |
Odd base index o = e + 2N'P = 16 + 2(4) = 24. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[16+4] | ={x[16+4]+x[24+4]}>>1 | x[20] | ={x[20]+x[28]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[16+5] | ={x[16+5]+x[24+5]}>>1 | x[21] | ={x[21]+x[29]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[24+2(2)] | = {(x[24+2(2)]-x[16+2(2)])t[(16)(2)]-(x[16+2(2)+1]-x[24+2(2)+1])t[(16)(2)+1]}>>1 | x[24+4] | = {(x[24+4]-x[16+4])t[32]-(x[16+4+1]-x[24+4+1])t[32+1]}>>1 | x[28] | = {(x[28]-x[20])t[32]-(x[21]-x[29])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[24+2(2)+1] | = {(x[24+2(2)+1]-x[16+2(2)+1])t[(16)(2)]+(x[16+2(2)]-x[24+2(2)])t[(16)(2)+1]}>>1 | x[24+5] | = {(x[24+5]-x[16+5])t[32]+(x[16+4]-x[24+4])t[32+1]}>>1 | x[29] | = {(x[29]-x[21])t[32]+(x[20]-x[28])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,1,3) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=3 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(1) = 16. |
Odd base index o = e + 2N'P = 16 + 2(4) = 24. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[16+6] | ={x[16+6]+x[24+6]}>>1 | x[22] | ={x[22]+x[30]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[16+7] | ={x[16+7]+x[24+7]}>>1 | x[23] | ={x[23]+x[31]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[24+2(3)] | = {(x[24+2(3)]-x[16+2(3)])t[(16)(3)]-(x[16+2(3)+1]-x[24+2(3)+1])t[(16)(3)+1]}>>1 | x[24+6] | = {(x[24+6]-x[16+6])t[48]-(x[16+6+1]-x[24+6+1])t[48+1]}>>1 | x[30] | = {(x[30]-x[22])t[48]-(x[23]-x[31])t[49]}>>1 | | = {(0000-0000)5a82-(0000-0000)a57d}>>1 | | = {(00000)5a82-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[24+2(3)+1] | = {(x[24+2(3)+1]-x[16+2(3)+1])t[(16)(3)]+(x[16+2(3)]-x[24+2(3)])t[(16)(3)+1]}>>1 | x[24+7] | = {(x[24+7]-x[16+7])t[48]+(x[16+6]-x[24+6])t[48+1]}>>1 | x[31] | = {(x[31]-x[23])t[48]+(x[22]-x[30])t[49]}>>1 | | = {(0000-0000)5a82+(0000-0000)a57d}>>1 | | = {(00000)5a82+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,2,0) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=2 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(2) = 32. |
Odd base index o = e + 2N'P = 32 + 2(4) = 40. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[32+0] | ={x[32+0]+x[40+0]}>>1 | x[32] | ={x[32]+x[40]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[32+1] | ={x[32+1]+x[40+1]}>>1 | x[33] | ={x[33]+x[41]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[40+2(0)] | = {(x[40+2(0)]-x[32+2(0)])t[(16)(0)]-(x[32+2(0)+1]-x[40+2(0)+1])t[(16)(0)+1]}>>1 | x[40+0] | = {(x[40+0]-x[32+0])t[0]-(x[32+0+1]-x[40+0+1])t[0+1]}>>1 | x[40] | = {(x[40]-x[32])t[0]-(x[33]-x[41])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[40+2(0)+1] | = {(x[40+2(0)+1]-x[32+2(0)+1])t[(16)(0)]+(x[32+2(0)]-x[40+2(0)])t[(16)(0)+1]}>>1 | x[40+1] | = {(x[40+1]-x[32+1])t[0]+(x[32+0]-x[40+0])t[0+1]}>>1 | x[41] | = {(x[41]-x[33])t[0]+(x[32]-x[40])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,2,1) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=2 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(2) = 32. |
Odd base index o = e + 2N'P = 32 + 2(4) = 40. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[32+2] | ={x[32+2]+x[40+2]}>>1 | x[34] | ={x[34]+x[42]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[32+3] | ={x[32+3]+x[40+3]}>>1 | x[35] | ={x[35]+x[43]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[40+2(1)] | = {(x[40+2(1)]-x[32+2(1)])t[(16)(1)]-(x[32+2(1)+1]-x[40+2(1)+1])t[(16)(1)+1]}>>1 | x[40+2] | = {(x[40+2]-x[32+2])t[16]-(x[32+2+1]-x[40+2+1])t[16+1]}>>1 | x[42] | = {(x[42]-x[34])t[16]-(x[35]-x[43])t[17]}>>1 | | = {(0000-0000)a57d-(0000-0000)a57d}>>1 | | = {(00000)a57d-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[40+2(1)+1] | = {(x[40+2(1)+1]-x[32+2(1)+1])t[(16)(1)]+(x[32+2(1)]-x[40+2(1)])t[(16)(1)+1]}>>1 | x[40+3] | = {(x[40+3]-x[32+3])t[16]+(x[32+2]-x[40+2])t[16+1]}>>1 | x[43] | = {(x[43]-x[35])t[16]+(x[34]-x[42])t[17]}>>1 | | = {(0000-0000)a57d+(0000-0000)a57d}>>1 | | = {(00000)a57d+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,2,2) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=2 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=2 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(2) = 32. |
Odd base index o = e + 2N'P = 32 + 2(4) = 40. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[32+4] | ={x[32+4]+x[40+4]}>>1 | x[36] | ={x[36]+x[44]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[32+5] | ={x[32+5]+x[40+5]}>>1 | x[37] | ={x[37]+x[45]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[40+2(2)] | = {(x[40+2(2)]-x[32+2(2)])t[(16)(2)]-(x[32+2(2)+1]-x[40+2(2)+1])t[(16)(2)+1]}>>1 | x[40+4] | = {(x[40+4]-x[32+4])t[32]-(x[32+4+1]-x[40+4+1])t[32+1]}>>1 | x[44] | = {(x[44]-x[36])t[32]-(x[37]-x[45])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[40+2(2)+1] | = {(x[40+2(2)+1]-x[32+2(2)+1])t[(16)(2)]+(x[32+2(2)]-x[40+2(2)])t[(16)(2)+1]}>>1 | x[40+5] | = {(x[40+5]-x[32+5])t[32]+(x[32+4]-x[40+4])t[32+1]}>>1 | x[45] | = {(x[45]-x[37])t[32]+(x[36]-x[44])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,2,3) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=2 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=3 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(2) = 32. |
Odd base index o = e + 2N'P = 32 + 2(4) = 40. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[32+6] | ={x[32+6]+x[40+6]}>>1 | x[38] | ={x[38]+x[46]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[32+7] | ={x[32+7]+x[40+7]}>>1 | x[39] | ={x[39]+x[47]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[40+2(3)] | = {(x[40+2(3)]-x[32+2(3)])t[(16)(3)]-(x[32+2(3)+1]-x[40+2(3)+1])t[(16)(3)+1]}>>1 | x[40+6] | = {(x[40+6]-x[32+6])t[48]-(x[32+6+1]-x[40+6+1])t[48+1]}>>1 | x[46] | = {(x[46]-x[38])t[48]-(x[39]-x[47])t[49]}>>1 | | = {(0000-0000)5a82-(0000-0000)a57d}>>1 | | = {(00000)5a82-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[40+2(3)+1] | = {(x[40+2(3)+1]-x[32+2(3)+1])t[(16)(3)]+(x[32+2(3)]-x[40+2(3)])t[(16)(3)+1]}>>1 | x[40+7] | = {(x[40+7]-x[32+7])t[48]+(x[32+6]-x[40+6])t[48+1]}>>1 | x[47] | = {(x[47]-x[39])t[48]+(x[38]-x[46])t[49]}>>1 | | = {(0000-0000)5a82+(0000-0000)a57d}>>1 | | = {(00000)5a82+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,3,0) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=3 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(3) = 48. |
Odd base index o = e + 2N'P = 48 + 2(4) = 56. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[48+0] | ={x[48+0]+x[56+0]}>>1 | x[48] | ={x[48]+x[56]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[48+1] | ={x[48+1]+x[56+1]}>>1 | x[49] | ={x[49]+x[57]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[56+2(0)] | = {(x[56+2(0)]-x[48+2(0)])t[(16)(0)]-(x[48+2(0)+1]-x[56+2(0)+1])t[(16)(0)+1]}>>1 | x[56+0] | = {(x[56+0]-x[48+0])t[0]-(x[48+0+1]-x[56+0+1])t[0+1]}>>1 | x[56] | = {(x[56]-x[48])t[0]-(x[49]-x[57])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[56+2(0)+1] | = {(x[56+2(0)+1]-x[48+2(0)+1])t[(16)(0)]+(x[48+2(0)]-x[56+2(0)])t[(16)(0)+1]}>>1 | x[56+1] | = {(x[56+1]-x[48+1])t[0]+(x[48+0]-x[56+0])t[0+1]}>>1 | x[57] | = {(x[57]-x[49])t[0]+(x[48]-x[56])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,3,1) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=3 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(3) = 48. |
Odd base index o = e + 2N'P = 48 + 2(4) = 56. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[48+2] | ={x[48+2]+x[56+2]}>>1 | x[50] | ={x[50]+x[58]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[48+3] | ={x[48+3]+x[56+3]}>>1 | x[51] | ={x[51]+x[59]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[56+2(1)] | = {(x[56+2(1)]-x[48+2(1)])t[(16)(1)]-(x[48+2(1)+1]-x[56+2(1)+1])t[(16)(1)+1]}>>1 | x[56+2] | = {(x[56+2]-x[48+2])t[16]-(x[48+2+1]-x[56+2+1])t[16+1]}>>1 | x[58] | = {(x[58]-x[50])t[16]-(x[51]-x[59])t[17]}>>1 | | = {(0000-0000)a57d-(0000-0000)a57d}>>1 | | = {(00000)a57d-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[56+2(1)+1] | = {(x[56+2(1)+1]-x[48+2(1)+1])t[(16)(1)]+(x[48+2(1)]-x[56+2(1)])t[(16)(1)+1]}>>1 | x[56+3] | = {(x[56+3]-x[48+3])t[16]+(x[48+2]-x[56+2])t[16+1]}>>1 | x[59] | = {(x[59]-x[51])t[16]+(x[50]-x[58])t[17]}>>1 | | = {(0000-0000)a57d+(0000-0000)a57d}>>1 | | = {(00000)a57d+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,3,2) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=3 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=2 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(3) = 48. |
Odd base index o = e + 2N'P = 48 + 2(4) = 56. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[48+4] | ={x[48+4]+x[56+4]}>>1 | x[52] | ={x[52]+x[60]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[48+5] | ={x[48+5]+x[56+5]}>>1 | x[53] | ={x[53]+x[61]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[56+2(2)] | = {(x[56+2(2)]-x[48+2(2)])t[(16)(2)]-(x[48+2(2)+1]-x[56+2(2)+1])t[(16)(2)+1]}>>1 | x[56+4] | = {(x[56+4]-x[48+4])t[32]-(x[48+4+1]-x[56+4+1])t[32+1]}>>1 | x[60] | = {(x[60]-x[52])t[32]-(x[53]-x[61])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[56+2(2)+1] | = {(x[56+2(2)+1]-x[48+2(2)+1])t[(16)(2)]+(x[48+2(2)]-x[56+2(2)])t[(16)(2)+1]}>>1 | x[56+5] | = {(x[56+5]-x[48+5])t[32]+(x[48+4]-x[56+4])t[32+1]}>>1 | x[61] | = {(x[61]-x[53])t[32]+(x[52]-x[60])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,3,3) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=3 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=3 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(3) = 48. |
Odd base index o = e + 2N'P = 48 + 2(4) = 56. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[48+6] | ={x[48+6]+x[56+6]}>>1 | x[54] | ={x[54]+x[62]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[48+7] | ={x[48+7]+x[56+7]}>>1 | x[55] | ={x[55]+x[63]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[56+2(3)] | = {(x[56+2(3)]-x[48+2(3)])t[(16)(3)]-(x[48+2(3)+1]-x[56+2(3)+1])t[(16)(3)+1]}>>1 | x[56+6] | = {(x[56+6]-x[48+6])t[48]-(x[48+6+1]-x[56+6+1])t[48+1]}>>1 | x[62] | = {(x[62]-x[54])t[48]-(x[55]-x[63])t[49]}>>1 | | = {(0000-0000)5a82-(0000-0000)a57d}>>1 | | = {(00000)5a82-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[56+2(3)+1] | = {(x[56+2(3)+1]-x[48+2(3)+1])t[(16)(3)]+(x[48+2(3)]-x[56+2(3)])t[(16)(3)+1]}>>1 | x[56+7] | = {(x[56+7]-x[48+7])t[48]+(x[48+6]-x[56+6])t[48+1]}>>1 | x[63] | = {(x[63]-x[55])t[48]+(x[54]-x[62])t[49]}>>1 | | = {(0000-0000)5a82+(0000-0000)a57d}>>1 | | = {(00000)5a82+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,4,0) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=4 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(4) = 64. |
Odd base index o = e + 2N'P = 64 + 2(4) = 72. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+0] | ={x[64+0]+x[72+0]}>>1 | x[64] | ={x[64]+x[72]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+1] | ={x[64+1]+x[72+1]}>>1 | x[65] | ={x[65]+x[73]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[72+2(0)] | = {(x[72+2(0)]-x[64+2(0)])t[(16)(0)]-(x[64+2(0)+1]-x[72+2(0)+1])t[(16)(0)+1]}>>1 | x[72+0] | = {(x[72+0]-x[64+0])t[0]-(x[64+0+1]-x[72+0+1])t[0+1]}>>1 | x[72] | = {(x[72]-x[64])t[0]-(x[65]-x[73])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[72+2(0)+1] | = {(x[72+2(0)+1]-x[64+2(0)+1])t[(16)(0)]+(x[64+2(0)]-x[72+2(0)])t[(16)(0)+1]}>>1 | x[72+1] | = {(x[72+1]-x[64+1])t[0]+(x[64+0]-x[72+0])t[0+1]}>>1 | x[73] | = {(x[73]-x[65])t[0]+(x[64]-x[72])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,4,1) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=4 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(4) = 64. |
Odd base index o = e + 2N'P = 64 + 2(4) = 72. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+2] | ={x[64+2]+x[72+2]}>>1 | x[66] | ={x[66]+x[74]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+3] | ={x[64+3]+x[72+3]}>>1 | x[67] | ={x[67]+x[75]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[72+2(1)] | = {(x[72+2(1)]-x[64+2(1)])t[(16)(1)]-(x[64+2(1)+1]-x[72+2(1)+1])t[(16)(1)+1]}>>1 | x[72+2] | = {(x[72+2]-x[64+2])t[16]-(x[64+2+1]-x[72+2+1])t[16+1]}>>1 | x[74] | = {(x[74]-x[66])t[16]-(x[67]-x[75])t[17]}>>1 | | = {(0000-0000)a57d-(0000-0000)a57d}>>1 | | = {(00000)a57d-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[72+2(1)+1] | = {(x[72+2(1)+1]-x[64+2(1)+1])t[(16)(1)]+(x[64+2(1)]-x[72+2(1)])t[(16)(1)+1]}>>1 | x[72+3] | = {(x[72+3]-x[64+3])t[16]+(x[64+2]-x[72+2])t[16+1]}>>1 | x[75] | = {(x[75]-x[67])t[16]+(x[66]-x[74])t[17]}>>1 | | = {(0000-0000)a57d+(0000-0000)a57d}>>1 | | = {(00000)a57d+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,4,2) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=4 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=2 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(4) = 64. |
Odd base index o = e + 2N'P = 64 + 2(4) = 72. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+4] | ={x[64+4]+x[72+4]}>>1 | x[68] | ={x[68]+x[76]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+5] | ={x[64+5]+x[72+5]}>>1 | x[69] | ={x[69]+x[77]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[72+2(2)] | = {(x[72+2(2)]-x[64+2(2)])t[(16)(2)]-(x[64+2(2)+1]-x[72+2(2)+1])t[(16)(2)+1]}>>1 | x[72+4] | = {(x[72+4]-x[64+4])t[32]-(x[64+4+1]-x[72+4+1])t[32+1]}>>1 | x[76] | = {(x[76]-x[68])t[32]-(x[69]-x[77])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[72+2(2)+1] | = {(x[72+2(2)+1]-x[64+2(2)+1])t[(16)(2)]+(x[64+2(2)]-x[72+2(2)])t[(16)(2)+1]}>>1 | x[72+5] | = {(x[72+5]-x[64+5])t[32]+(x[64+4]-x[72+4])t[32+1]}>>1 | x[77] | = {(x[77]-x[69])t[32]+(x[68]-x[76])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,4,3) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=4 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=3 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(4) = 64. |
Odd base index o = e + 2N'P = 64 + 2(4) = 72. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+6] | ={x[64+6]+x[72+6]}>>1 | x[70] | ={x[70]+x[78]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+7] | ={x[64+7]+x[72+7]}>>1 | x[71] | ={x[71]+x[79]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[72+2(3)] | = {(x[72+2(3)]-x[64+2(3)])t[(16)(3)]-(x[64+2(3)+1]-x[72+2(3)+1])t[(16)(3)+1]}>>1 | x[72+6] | = {(x[72+6]-x[64+6])t[48]-(x[64+6+1]-x[72+6+1])t[48+1]}>>1 | x[78] | = {(x[78]-x[70])t[48]-(x[71]-x[79])t[49]}>>1 | | = {(0000-0000)5a82-(0000-0000)a57d}>>1 | | = {(00000)5a82-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[72+2(3)+1] | = {(x[72+2(3)+1]-x[64+2(3)+1])t[(16)(3)]+(x[64+2(3)]-x[72+2(3)])t[(16)(3)+1]}>>1 | x[72+7] | = {(x[72+7]-x[64+7])t[48]+(x[64+6]-x[72+6])t[48+1]}>>1 | x[79] | = {(x[79]-x[71])t[48]+(x[70]-x[78])t[49]}>>1 | | = {(0000-0000)5a82+(0000-0000)a57d}>>1 | | = {(00000)5a82+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,5,0) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=5 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(5) = 80. |
Odd base index o = e + 2N'P = 80 + 2(4) = 88. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[80+0] | ={x[80+0]+x[88+0]}>>1 | x[80] | ={x[80]+x[88]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[80+1] | ={x[80+1]+x[88+1]}>>1 | x[81] | ={x[81]+x[89]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[88+2(0)] | = {(x[88+2(0)]-x[80+2(0)])t[(16)(0)]-(x[80+2(0)+1]-x[88+2(0)+1])t[(16)(0)+1]}>>1 | x[88+0] | = {(x[88+0]-x[80+0])t[0]-(x[80+0+1]-x[88+0+1])t[0+1]}>>1 | x[88] | = {(x[88]-x[80])t[0]-(x[81]-x[89])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[88+2(0)+1] | = {(x[88+2(0)+1]-x[80+2(0)+1])t[(16)(0)]+(x[80+2(0)]-x[88+2(0)])t[(16)(0)+1]}>>1 | x[88+1] | = {(x[88+1]-x[80+1])t[0]+(x[80+0]-x[88+0])t[0+1]}>>1 | x[89] | = {(x[89]-x[81])t[0]+(x[80]-x[88])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,5,1) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=5 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(5) = 80. |
Odd base index o = e + 2N'P = 80 + 2(4) = 88. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[80+2] | ={x[80+2]+x[88+2]}>>1 | x[82] | ={x[82]+x[90]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[80+3] | ={x[80+3]+x[88+3]}>>1 | x[83] | ={x[83]+x[91]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[88+2(1)] | = {(x[88+2(1)]-x[80+2(1)])t[(16)(1)]-(x[80+2(1)+1]-x[88+2(1)+1])t[(16)(1)+1]}>>1 | x[88+2] | = {(x[88+2]-x[80+2])t[16]-(x[80+2+1]-x[88+2+1])t[16+1]}>>1 | x[90] | = {(x[90]-x[82])t[16]-(x[83]-x[91])t[17]}>>1 | | = {(0000-0000)a57d-(0000-0000)a57d}>>1 | | = {(00000)a57d-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[88+2(1)+1] | = {(x[88+2(1)+1]-x[80+2(1)+1])t[(16)(1)]+(x[80+2(1)]-x[88+2(1)])t[(16)(1)+1]}>>1 | x[88+3] | = {(x[88+3]-x[80+3])t[16]+(x[80+2]-x[88+2])t[16+1]}>>1 | x[91] | = {(x[91]-x[83])t[16]+(x[82]-x[90])t[17]}>>1 | | = {(0000-0000)a57d+(0000-0000)a57d}>>1 | | = {(00000)a57d+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,5,2) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=5 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=2 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(5) = 80. |
Odd base index o = e + 2N'P = 80 + 2(4) = 88. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[80+4] | ={x[80+4]+x[88+4]}>>1 | x[84] | ={x[84]+x[92]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[80+5] | ={x[80+5]+x[88+5]}>>1 | x[85] | ={x[85]+x[93]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[88+2(2)] | = {(x[88+2(2)]-x[80+2(2)])t[(16)(2)]-(x[80+2(2)+1]-x[88+2(2)+1])t[(16)(2)+1]}>>1 | x[88+4] | = {(x[88+4]-x[80+4])t[32]-(x[80+4+1]-x[88+4+1])t[32+1]}>>1 | x[92] | = {(x[92]-x[84])t[32]-(x[85]-x[93])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[88+2(2)+1] | = {(x[88+2(2)+1]-x[80+2(2)+1])t[(16)(2)]+(x[80+2(2)]-x[88+2(2)])t[(16)(2)+1]}>>1 | x[88+5] | = {(x[88+5]-x[80+5])t[32]+(x[80+4]-x[88+4])t[32+1]}>>1 | x[93] | = {(x[93]-x[85])t[32]+(x[84]-x[92])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,5,3) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=5 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=3 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(5) = 80. |
Odd base index o = e + 2N'P = 80 + 2(4) = 88. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[80+6] | ={x[80+6]+x[88+6]}>>1 | x[86] | ={x[86]+x[94]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[80+7] | ={x[80+7]+x[88+7]}>>1 | x[87] | ={x[87]+x[95]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[88+2(3)] | = {(x[88+2(3)]-x[80+2(3)])t[(16)(3)]-(x[80+2(3)+1]-x[88+2(3)+1])t[(16)(3)+1]}>>1 | x[88+6] | = {(x[88+6]-x[80+6])t[48]-(x[80+6+1]-x[88+6+1])t[48+1]}>>1 | x[94] | = {(x[94]-x[86])t[48]-(x[87]-x[95])t[49]}>>1 | | = {(0000-0000)5a82-(0000-0000)a57d}>>1 | | = {(00000)5a82-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[88+2(3)+1] | = {(x[88+2(3)+1]-x[80+2(3)+1])t[(16)(3)]+(x[80+2(3)]-x[88+2(3)])t[(16)(3)+1]}>>1 | x[88+7] | = {(x[88+7]-x[80+7])t[48]+(x[80+6]-x[88+6])t[48+1]}>>1 | x[95] | = {(x[95]-x[87])t[48]+(x[86]-x[94])t[49]}>>1 | | = {(0000-0000)5a82+(0000-0000)a57d}>>1 | | = {(00000)5a82+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,6,0) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=6 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(6) = 96. |
Odd base index o = e + 2N'P = 96 + 2(4) = 104. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[96+0] | ={x[96+0]+x[104+0]}>>1 | x[96] | ={x[96]+x[104]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[96+1] | ={x[96+1]+x[104+1]}>>1 | x[97] | ={x[97]+x[105]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[104+2(0)] | = {(x[104+2(0)]-x[96+2(0)])t[(16)(0)]-(x[96+2(0)+1]-x[104+2(0)+1])t[(16)(0)+1]}>>1 | x[104+0] | = {(x[104+0]-x[96+0])t[0]-(x[96+0+1]-x[104+0+1])t[0+1]}>>1 | x[104] | = {(x[104]-x[96])t[0]-(x[97]-x[105])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[104+2(0)+1] | = {(x[104+2(0)+1]-x[96+2(0)+1])t[(16)(0)]+(x[96+2(0)]-x[104+2(0)])t[(16)(0)+1]}>>1 | x[104+1] | = {(x[104+1]-x[96+1])t[0]+(x[96+0]-x[104+0])t[0+1]}>>1 | x[105] | = {(x[105]-x[97])t[0]+(x[96]-x[104])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,6,1) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=6 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(6) = 96. |
Odd base index o = e + 2N'P = 96 + 2(4) = 104. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[96+2] | ={x[96+2]+x[104+2]}>>1 | x[98] | ={x[98]+x[106]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[96+3] | ={x[96+3]+x[104+3]}>>1 | x[99] | ={x[99]+x[107]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[104+2(1)] | = {(x[104+2(1)]-x[96+2(1)])t[(16)(1)]-(x[96+2(1)+1]-x[104+2(1)+1])t[(16)(1)+1]}>>1 | x[104+2] | = {(x[104+2]-x[96+2])t[16]-(x[96+2+1]-x[104+2+1])t[16+1]}>>1 | x[106] | = {(x[106]-x[98])t[16]-(x[99]-x[107])t[17]}>>1 | | = {(0000-0000)a57d-(0000-0000)a57d}>>1 | | = {(00000)a57d-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[104+2(1)+1] | = {(x[104+2(1)+1]-x[96+2(1)+1])t[(16)(1)]+(x[96+2(1)]-x[104+2(1)])t[(16)(1)+1]}>>1 | x[104+3] | = {(x[104+3]-x[96+3])t[16]+(x[96+2]-x[104+2])t[16+1]}>>1 | x[107] | = {(x[107]-x[99])t[16]+(x[98]-x[106])t[17]}>>1 | | = {(0000-0000)a57d+(0000-0000)a57d}>>1 | | = {(00000)a57d+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,6,2) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=6 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=2 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(6) = 96. |
Odd base index o = e + 2N'P = 96 + 2(4) = 104. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[96+4] | ={x[96+4]+x[104+4]}>>1 | x[100] | ={x[100]+x[108]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[96+5] | ={x[96+5]+x[104+5]}>>1 | x[101] | ={x[101]+x[109]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[104+2(2)] | = {(x[104+2(2)]-x[96+2(2)])t[(16)(2)]-(x[96+2(2)+1]-x[104+2(2)+1])t[(16)(2)+1]}>>1 | x[104+4] | = {(x[104+4]-x[96+4])t[32]-(x[96+4+1]-x[104+4+1])t[32+1]}>>1 | x[108] | = {(x[108]-x[100])t[32]-(x[101]-x[109])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[104+2(2)+1] | = {(x[104+2(2)+1]-x[96+2(2)+1])t[(16)(2)]+(x[96+2(2)]-x[104+2(2)])t[(16)(2)+1]}>>1 | x[104+5] | = {(x[104+5]-x[96+5])t[32]+(x[96+4]-x[104+4])t[32+1]}>>1 | x[109] | = {(x[109]-x[101])t[32]+(x[100]-x[108])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,6,3) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=6 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=3 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(6) = 96. |
Odd base index o = e + 2N'P = 96 + 2(4) = 104. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[96+6] | ={x[96+6]+x[104+6]}>>1 | x[102] | ={x[102]+x[110]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[96+7] | ={x[96+7]+x[104+7]}>>1 | x[103] | ={x[103]+x[111]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[104+2(3)] | = {(x[104+2(3)]-x[96+2(3)])t[(16)(3)]-(x[96+2(3)+1]-x[104+2(3)+1])t[(16)(3)+1]}>>1 | x[104+6] | = {(x[104+6]-x[96+6])t[48]-(x[96+6+1]-x[104+6+1])t[48+1]}>>1 | x[110] | = {(x[110]-x[102])t[48]-(x[103]-x[111])t[49]}>>1 | | = {(0000-0000)5a82-(0000-0000)a57d}>>1 | | = {(00000)5a82-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[104+2(3)+1] | = {(x[104+2(3)+1]-x[96+2(3)+1])t[(16)(3)]+(x[96+2(3)]-x[104+2(3)])t[(16)(3)+1]}>>1 | x[104+7] | = {(x[104+7]-x[96+7])t[48]+(x[96+6]-x[104+6])t[48+1]}>>1 | x[111] | = {(x[111]-x[103])t[48]+(x[102]-x[110])t[49]}>>1 | | = {(0000-0000)5a82+(0000-0000)a57d}>>1 | | = {(00000)5a82+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,7,0) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=7 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(7) = 112. |
Odd base index o = e + 2N'P = 112 + 2(4) = 120. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[112+0] | ={x[112+0]+x[120+0]}>>1 | x[112] | ={x[112]+x[120]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[112+1] | ={x[112+1]+x[120+1]}>>1 | x[113] | ={x[113]+x[121]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[120+2(0)] | = {(x[120+2(0)]-x[112+2(0)])t[(16)(0)]-(x[112+2(0)+1]-x[120+2(0)+1])t[(16)(0)+1]}>>1 | x[120+0] | = {(x[120+0]-x[112+0])t[0]-(x[112+0+1]-x[120+0+1])t[0+1]}>>1 | x[120] | = {(x[120]-x[112])t[0]-(x[113]-x[121])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[120+2(0)+1] | = {(x[120+2(0)+1]-x[112+2(0)+1])t[(16)(0)]+(x[112+2(0)]-x[120+2(0)])t[(16)(0)+1]}>>1 | x[120+1] | = {(x[120+1]-x[112+1])t[0]+(x[112+0]-x[120+0])t[0+1]}>>1 | x[121] | = {(x[121]-x[113])t[0]+(x[112]-x[120])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,7,1) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=7 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(7) = 112. |
Odd base index o = e + 2N'P = 112 + 2(4) = 120. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[112+2] | ={x[112+2]+x[120+2]}>>1 | x[114] | ={x[114]+x[122]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[112+3] | ={x[112+3]+x[120+3]}>>1 | x[115] | ={x[115]+x[123]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[120+2(1)] | = {(x[120+2(1)]-x[112+2(1)])t[(16)(1)]-(x[112+2(1)+1]-x[120+2(1)+1])t[(16)(1)+1]}>>1 | x[120+2] | = {(x[120+2]-x[112+2])t[16]-(x[112+2+1]-x[120+2+1])t[16+1]}>>1 | x[122] | = {(x[122]-x[114])t[16]-(x[115]-x[123])t[17]}>>1 | | = {(0000-0000)a57d-(0000-0000)a57d}>>1 | | = {(00000)a57d-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[120+2(1)+1] | = {(x[120+2(1)+1]-x[112+2(1)+1])t[(16)(1)]+(x[112+2(1)]-x[120+2(1)])t[(16)(1)+1]}>>1 | x[120+3] | = {(x[120+3]-x[112+3])t[16]+(x[112+2]-x[120+2])t[16+1]}>>1 | x[123] | = {(x[123]-x[115])t[16]+(x[114]-x[122])t[17]}>>1 | | = {(0000-0000)a57d+(0000-0000)a57d}>>1 | | = {(00000)a57d+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,7,2) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=7 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=2 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(7) = 112. |
Odd base index o = e + 2N'P = 112 + 2(4) = 120. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[112+4] | ={x[112+4]+x[120+4]}>>1 | x[116] | ={x[116]+x[124]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[112+5] | ={x[112+5]+x[120+5]}>>1 | x[117] | ={x[117]+x[125]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[120+2(2)] | = {(x[120+2(2)]-x[112+2(2)])t[(16)(2)]-(x[112+2(2)+1]-x[120+2(2)+1])t[(16)(2)+1]}>>1 | x[120+4] | = {(x[120+4]-x[112+4])t[32]-(x[112+4+1]-x[120+4+1])t[32+1]}>>1 | x[124] | = {(x[124]-x[116])t[32]-(x[117]-x[125])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[120+2(2)+1] | = {(x[120+2(2)+1]-x[112+2(2)+1])t[(16)(2)]+(x[112+2(2)]-x[120+2(2)])t[(16)(2)+1]}>>1 | x[120+5] | = {(x[120+5]-x[112+5])t[32]+(x[112+4]-x[120+4])t[32+1]}>>1 | x[125] | = {(x[125]-x[117])t[32]+(x[116]-x[124])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(3,7,3) |
Loop P=3 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=7 of BP=B3=2P=23=8 subblocks, indexed b=0...B3-1=0...7. |
Subblock size=NP|P=3=N3=N/BP|(N=64,P=3)=(2p/2P)|(p=6,P=3)=2p-P|(p=6,P=3)=26-3=8. |
Butterfly n=3 of N'P=NP/2=2p-P-1=26-3-1=4 butterflies indexed by n=0...N'P-1=0...3. |
Even base index e = 2NPb = 2(8)(7) = 112. |
Odd base index o = e + 2N'P = 112 + 2(4) = 120. |
Twiddle step size s = 2P+1 = 23+1 = 16. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[112+6] | ={x[112+6]+x[120+6]}>>1 | x[118] | ={x[118]+x[126]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[112+7] | ={x[112+7]+x[120+7]}>>1 | x[119] | ={x[119]+x[127]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[120+2(3)] | = {(x[120+2(3)]-x[112+2(3)])t[(16)(3)]-(x[112+2(3)+1]-x[120+2(3)+1])t[(16)(3)+1]}>>1 | x[120+6] | = {(x[120+6]-x[112+6])t[48]-(x[112+6+1]-x[120+6+1])t[48+1]}>>1 | x[126] | = {(x[126]-x[118])t[48]-(x[119]-x[127])t[49]}>>1 | | = {(0000-0000)5a82-(0000-0000)a57d}>>1 | | = {(00000)5a82-(00000)a57d}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[120+2(3)+1] | = {(x[120+2(3)+1]-x[112+2(3)+1])t[(16)(3)]+(x[112+2(3)]-x[120+2(3)])t[(16)(3)+1]}>>1 | x[120+7] | = {(x[120+7]-x[112+7])t[48]+(x[112+6]-x[120+6])t[48+1]}>>1 | x[127] | = {(x[127]-x[119])t[48]+(x[118]-x[126])t[49]}>>1 | | = {(0000-0000)5a82+(0000-0000)a57d}>>1 | | = {(00000)5a82+(00000)a57d}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
Return to Table of Contents