64-point radix-2 fixed-point DIF FFT IV-KAT Tables (continued)
John Bryan
(P,b,n)=(4,0,0) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(2) = 4. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+0] | ={x[0+0]+x[4+0]}>>1 | x[0] | ={x[0]+x[4]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+1] | ={x[0+1]+x[4+1]}>>1 | x[1] | ={x[1]+x[5]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[4+2(0)] | = {(x[4+2(0)]-x[0+2(0)])t[(32)(0)]-(x[0+2(0)+1]-x[4+2(0)+1])t[(32)(0)+1]}>>1 | x[4+0] | = {(x[4+0]-x[0+0])t[0]-(x[0+0+1]-x[4+0+1])t[0+1]}>>1 | x[4] | = {(x[4]-x[0])t[0]-(x[1]-x[5])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[4+2(0)+1] | = {(x[4+2(0)+1]-x[0+2(0)+1])t[(32)(0)]+(x[0+2(0)]-x[4+2(0)])t[(32)(0)+1]}>>1 | x[4+1] | = {(x[4+1]-x[0+1])t[0]+(x[0+0]-x[4+0])t[0+1]}>>1 | x[5] | = {(x[5]-x[1])t[0]+(x[0]-x[4])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,0,1) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(2) = 4. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+2] | ={x[0+2]+x[4+2]}>>1 | x[2] | ={x[2]+x[6]}>>1 | | ={1000 +f000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+3] | ={x[0+3]+x[4+3]}>>1 | x[3] | ={x[3]+x[7]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[4+2(1)] | = {(x[4+2(1)]-x[0+2(1)])t[(32)(1)]-(x[0+2(1)+1]-x[4+2(1)+1])t[(32)(1)+1]}>>1 | x[4+2] | = {(x[4+2]-x[0+2])t[32]-(x[0+2+1]-x[4+2+1])t[32+1]}>>1 | x[6] | = {(x[6]-x[2])t[32]-(x[3]-x[7])t[33]}>>1 | | = {(f000-1000)ffff-(0000-0000)8000}>>1 | | = {(fe000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[4+2(1)+1] | = {(x[4+2(1)+1]-x[0+2(1)+1])t[(32)(1)]+(x[0+2(1)]-x[4+2(1)])t[(32)(1)+1]}>>1 | x[4+3] | = {(x[4+3]-x[0+3])t[32]+(x[0+2]-x[4+2])t[32+1]}>>1 | x[7] | = {(x[7]-x[3])t[32]+(x[2]-x[6])t[33]}>>1 | | = {(0000-0000)ffff+(1000-f000)8000}>>1 | | = {(00000)ffff+(02000)8000}>>1 | | = {00000+fc000}>>1 | | = {fc000}>>1 | | = e000 | |
Return to Table of Contents
(P,b,n)=(4,1,0) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(1) = 8. |
Odd base index o = e + 2N'P = 8 + 2(2) = 12. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[8+0] | ={x[8+0]+x[12+0]}>>1 | x[8] | ={x[8]+x[12]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[8+1] | ={x[8+1]+x[12+1]}>>1 | x[9] | ={x[9]+x[13]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[12+2(0)] | = {(x[12+2(0)]-x[8+2(0)])t[(32)(0)]-(x[8+2(0)+1]-x[12+2(0)+1])t[(32)(0)+1]}>>1 | x[12+0] | = {(x[12+0]-x[8+0])t[0]-(x[8+0+1]-x[12+0+1])t[0+1]}>>1 | x[12] | = {(x[12]-x[8])t[0]-(x[9]-x[13])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[12+2(0)+1] | = {(x[12+2(0)+1]-x[8+2(0)+1])t[(32)(0)]+(x[8+2(0)]-x[12+2(0)])t[(32)(0)+1]}>>1 | x[12+1] | = {(x[12+1]-x[8+1])t[0]+(x[8+0]-x[12+0])t[0+1]}>>1 | x[13] | = {(x[13]-x[9])t[0]+(x[8]-x[12])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,1,1) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(1) = 8. |
Odd base index o = e + 2N'P = 8 + 2(2) = 12. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[8+2] | ={x[8+2]+x[12+2]}>>1 | x[10] | ={x[10]+x[14]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[8+3] | ={x[8+3]+x[12+3]}>>1 | x[11] | ={x[11]+x[15]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[12+2(1)] | = {(x[12+2(1)]-x[8+2(1)])t[(32)(1)]-(x[8+2(1)+1]-x[12+2(1)+1])t[(32)(1)+1]}>>1 | x[12+2] | = {(x[12+2]-x[8+2])t[32]-(x[8+2+1]-x[12+2+1])t[32+1]}>>1 | x[14] | = {(x[14]-x[10])t[32]-(x[11]-x[15])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[12+2(1)+1] | = {(x[12+2(1)+1]-x[8+2(1)+1])t[(32)(1)]+(x[8+2(1)]-x[12+2(1)])t[(32)(1)+1]}>>1 | x[12+3] | = {(x[12+3]-x[8+3])t[32]+(x[8+2]-x[12+2])t[32+1]}>>1 | x[15] | = {(x[15]-x[11])t[32]+(x[10]-x[14])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,2,0) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=2 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(2) = 16. |
Odd base index o = e + 2N'P = 16 + 2(2) = 20. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[16+0] | ={x[16+0]+x[20+0]}>>1 | x[16] | ={x[16]+x[20]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[16+1] | ={x[16+1]+x[20+1]}>>1 | x[17] | ={x[17]+x[21]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[20+2(0)] | = {(x[20+2(0)]-x[16+2(0)])t[(32)(0)]-(x[16+2(0)+1]-x[20+2(0)+1])t[(32)(0)+1]}>>1 | x[20+0] | = {(x[20+0]-x[16+0])t[0]-(x[16+0+1]-x[20+0+1])t[0+1]}>>1 | x[20] | = {(x[20]-x[16])t[0]-(x[17]-x[21])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[20+2(0)+1] | = {(x[20+2(0)+1]-x[16+2(0)+1])t[(32)(0)]+(x[16+2(0)]-x[20+2(0)])t[(32)(0)+1]}>>1 | x[20+1] | = {(x[20+1]-x[16+1])t[0]+(x[16+0]-x[20+0])t[0+1]}>>1 | x[21] | = {(x[21]-x[17])t[0]+(x[16]-x[20])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,2,1) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=2 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(2) = 16. |
Odd base index o = e + 2N'P = 16 + 2(2) = 20. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[16+2] | ={x[16+2]+x[20+2]}>>1 | x[18] | ={x[18]+x[22]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[16+3] | ={x[16+3]+x[20+3]}>>1 | x[19] | ={x[19]+x[23]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[20+2(1)] | = {(x[20+2(1)]-x[16+2(1)])t[(32)(1)]-(x[16+2(1)+1]-x[20+2(1)+1])t[(32)(1)+1]}>>1 | x[20+2] | = {(x[20+2]-x[16+2])t[32]-(x[16+2+1]-x[20+2+1])t[32+1]}>>1 | x[22] | = {(x[22]-x[18])t[32]-(x[19]-x[23])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[20+2(1)+1] | = {(x[20+2(1)+1]-x[16+2(1)+1])t[(32)(1)]+(x[16+2(1)]-x[20+2(1)])t[(32)(1)+1]}>>1 | x[20+3] | = {(x[20+3]-x[16+3])t[32]+(x[16+2]-x[20+2])t[32+1]}>>1 | x[23] | = {(x[23]-x[19])t[32]+(x[18]-x[22])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,3,0) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=3 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(3) = 24. |
Odd base index o = e + 2N'P = 24 + 2(2) = 28. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[24+0] | ={x[24+0]+x[28+0]}>>1 | x[24] | ={x[24]+x[28]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[24+1] | ={x[24+1]+x[28+1]}>>1 | x[25] | ={x[25]+x[29]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[28+2(0)] | = {(x[28+2(0)]-x[24+2(0)])t[(32)(0)]-(x[24+2(0)+1]-x[28+2(0)+1])t[(32)(0)+1]}>>1 | x[28+0] | = {(x[28+0]-x[24+0])t[0]-(x[24+0+1]-x[28+0+1])t[0+1]}>>1 | x[28] | = {(x[28]-x[24])t[0]-(x[25]-x[29])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[28+2(0)+1] | = {(x[28+2(0)+1]-x[24+2(0)+1])t[(32)(0)]+(x[24+2(0)]-x[28+2(0)])t[(32)(0)+1]}>>1 | x[28+1] | = {(x[28+1]-x[24+1])t[0]+(x[24+0]-x[28+0])t[0+1]}>>1 | x[29] | = {(x[29]-x[25])t[0]+(x[24]-x[28])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,3,1) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=3 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(3) = 24. |
Odd base index o = e + 2N'P = 24 + 2(2) = 28. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[24+2] | ={x[24+2]+x[28+2]}>>1 | x[26] | ={x[26]+x[30]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[24+3] | ={x[24+3]+x[28+3]}>>1 | x[27] | ={x[27]+x[31]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[28+2(1)] | = {(x[28+2(1)]-x[24+2(1)])t[(32)(1)]-(x[24+2(1)+1]-x[28+2(1)+1])t[(32)(1)+1]}>>1 | x[28+2] | = {(x[28+2]-x[24+2])t[32]-(x[24+2+1]-x[28+2+1])t[32+1]}>>1 | x[30] | = {(x[30]-x[26])t[32]-(x[27]-x[31])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[28+2(1)+1] | = {(x[28+2(1)+1]-x[24+2(1)+1])t[(32)(1)]+(x[24+2(1)]-x[28+2(1)])t[(32)(1)+1]}>>1 | x[28+3] | = {(x[28+3]-x[24+3])t[32]+(x[24+2]-x[28+2])t[32+1]}>>1 | x[31] | = {(x[31]-x[27])t[32]+(x[26]-x[30])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,4,0) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=4 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(4) = 32. |
Odd base index o = e + 2N'P = 32 + 2(2) = 36. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[32+0] | ={x[32+0]+x[36+0]}>>1 | x[32] | ={x[32]+x[36]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[32+1] | ={x[32+1]+x[36+1]}>>1 | x[33] | ={x[33]+x[37]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[36+2(0)] | = {(x[36+2(0)]-x[32+2(0)])t[(32)(0)]-(x[32+2(0)+1]-x[36+2(0)+1])t[(32)(0)+1]}>>1 | x[36+0] | = {(x[36+0]-x[32+0])t[0]-(x[32+0+1]-x[36+0+1])t[0+1]}>>1 | x[36] | = {(x[36]-x[32])t[0]-(x[33]-x[37])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[36+2(0)+1] | = {(x[36+2(0)+1]-x[32+2(0)+1])t[(32)(0)]+(x[32+2(0)]-x[36+2(0)])t[(32)(0)+1]}>>1 | x[36+1] | = {(x[36+1]-x[32+1])t[0]+(x[32+0]-x[36+0])t[0+1]}>>1 | x[37] | = {(x[37]-x[33])t[0]+(x[32]-x[36])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,4,1) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=4 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(4) = 32. |
Odd base index o = e + 2N'P = 32 + 2(2) = 36. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[32+2] | ={x[32+2]+x[36+2]}>>1 | x[34] | ={x[34]+x[38]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[32+3] | ={x[32+3]+x[36+3]}>>1 | x[35] | ={x[35]+x[39]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[36+2(1)] | = {(x[36+2(1)]-x[32+2(1)])t[(32)(1)]-(x[32+2(1)+1]-x[36+2(1)+1])t[(32)(1)+1]}>>1 | x[36+2] | = {(x[36+2]-x[32+2])t[32]-(x[32+2+1]-x[36+2+1])t[32+1]}>>1 | x[38] | = {(x[38]-x[34])t[32]-(x[35]-x[39])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[36+2(1)+1] | = {(x[36+2(1)+1]-x[32+2(1)+1])t[(32)(1)]+(x[32+2(1)]-x[36+2(1)])t[(32)(1)+1]}>>1 | x[36+3] | = {(x[36+3]-x[32+3])t[32]+(x[32+2]-x[36+2])t[32+1]}>>1 | x[39] | = {(x[39]-x[35])t[32]+(x[34]-x[38])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,5,0) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=5 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(5) = 40. |
Odd base index o = e + 2N'P = 40 + 2(2) = 44. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[40+0] | ={x[40+0]+x[44+0]}>>1 | x[40] | ={x[40]+x[44]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[40+1] | ={x[40+1]+x[44+1]}>>1 | x[41] | ={x[41]+x[45]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[44+2(0)] | = {(x[44+2(0)]-x[40+2(0)])t[(32)(0)]-(x[40+2(0)+1]-x[44+2(0)+1])t[(32)(0)+1]}>>1 | x[44+0] | = {(x[44+0]-x[40+0])t[0]-(x[40+0+1]-x[44+0+1])t[0+1]}>>1 | x[44] | = {(x[44]-x[40])t[0]-(x[41]-x[45])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[44+2(0)+1] | = {(x[44+2(0)+1]-x[40+2(0)+1])t[(32)(0)]+(x[40+2(0)]-x[44+2(0)])t[(32)(0)+1]}>>1 | x[44+1] | = {(x[44+1]-x[40+1])t[0]+(x[40+0]-x[44+0])t[0+1]}>>1 | x[45] | = {(x[45]-x[41])t[0]+(x[40]-x[44])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,5,1) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=5 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(5) = 40. |
Odd base index o = e + 2N'P = 40 + 2(2) = 44. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[40+2] | ={x[40+2]+x[44+2]}>>1 | x[42] | ={x[42]+x[46]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[40+3] | ={x[40+3]+x[44+3]}>>1 | x[43] | ={x[43]+x[47]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[44+2(1)] | = {(x[44+2(1)]-x[40+2(1)])t[(32)(1)]-(x[40+2(1)+1]-x[44+2(1)+1])t[(32)(1)+1]}>>1 | x[44+2] | = {(x[44+2]-x[40+2])t[32]-(x[40+2+1]-x[44+2+1])t[32+1]}>>1 | x[46] | = {(x[46]-x[42])t[32]-(x[43]-x[47])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[44+2(1)+1] | = {(x[44+2(1)+1]-x[40+2(1)+1])t[(32)(1)]+(x[40+2(1)]-x[44+2(1)])t[(32)(1)+1]}>>1 | x[44+3] | = {(x[44+3]-x[40+3])t[32]+(x[40+2]-x[44+2])t[32+1]}>>1 | x[47] | = {(x[47]-x[43])t[32]+(x[42]-x[46])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,6,0) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=6 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(6) = 48. |
Odd base index o = e + 2N'P = 48 + 2(2) = 52. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[48+0] | ={x[48+0]+x[52+0]}>>1 | x[48] | ={x[48]+x[52]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[48+1] | ={x[48+1]+x[52+1]}>>1 | x[49] | ={x[49]+x[53]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[52+2(0)] | = {(x[52+2(0)]-x[48+2(0)])t[(32)(0)]-(x[48+2(0)+1]-x[52+2(0)+1])t[(32)(0)+1]}>>1 | x[52+0] | = {(x[52+0]-x[48+0])t[0]-(x[48+0+1]-x[52+0+1])t[0+1]}>>1 | x[52] | = {(x[52]-x[48])t[0]-(x[49]-x[53])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[52+2(0)+1] | = {(x[52+2(0)+1]-x[48+2(0)+1])t[(32)(0)]+(x[48+2(0)]-x[52+2(0)])t[(32)(0)+1]}>>1 | x[52+1] | = {(x[52+1]-x[48+1])t[0]+(x[48+0]-x[52+0])t[0+1]}>>1 | x[53] | = {(x[53]-x[49])t[0]+(x[48]-x[52])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,6,1) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=6 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(6) = 48. |
Odd base index o = e + 2N'P = 48 + 2(2) = 52. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[48+2] | ={x[48+2]+x[52+2]}>>1 | x[50] | ={x[50]+x[54]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[48+3] | ={x[48+3]+x[52+3]}>>1 | x[51] | ={x[51]+x[55]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[52+2(1)] | = {(x[52+2(1)]-x[48+2(1)])t[(32)(1)]-(x[48+2(1)+1]-x[52+2(1)+1])t[(32)(1)+1]}>>1 | x[52+2] | = {(x[52+2]-x[48+2])t[32]-(x[48+2+1]-x[52+2+1])t[32+1]}>>1 | x[54] | = {(x[54]-x[50])t[32]-(x[51]-x[55])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[52+2(1)+1] | = {(x[52+2(1)+1]-x[48+2(1)+1])t[(32)(1)]+(x[48+2(1)]-x[52+2(1)])t[(32)(1)+1]}>>1 | x[52+3] | = {(x[52+3]-x[48+3])t[32]+(x[48+2]-x[52+2])t[32+1]}>>1 | x[55] | = {(x[55]-x[51])t[32]+(x[50]-x[54])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,7,0) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=7 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(7) = 56. |
Odd base index o = e + 2N'P = 56 + 2(2) = 60. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[56+0] | ={x[56+0]+x[60+0]}>>1 | x[56] | ={x[56]+x[60]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[56+1] | ={x[56+1]+x[60+1]}>>1 | x[57] | ={x[57]+x[61]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[60+2(0)] | = {(x[60+2(0)]-x[56+2(0)])t[(32)(0)]-(x[56+2(0)+1]-x[60+2(0)+1])t[(32)(0)+1]}>>1 | x[60+0] | = {(x[60+0]-x[56+0])t[0]-(x[56+0+1]-x[60+0+1])t[0+1]}>>1 | x[60] | = {(x[60]-x[56])t[0]-(x[57]-x[61])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[60+2(0)+1] | = {(x[60+2(0)+1]-x[56+2(0)+1])t[(32)(0)]+(x[56+2(0)]-x[60+2(0)])t[(32)(0)+1]}>>1 | x[60+1] | = {(x[60+1]-x[56+1])t[0]+(x[56+0]-x[60+0])t[0+1]}>>1 | x[61] | = {(x[61]-x[57])t[0]+(x[56]-x[60])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,7,1) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=7 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(7) = 56. |
Odd base index o = e + 2N'P = 56 + 2(2) = 60. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[56+2] | ={x[56+2]+x[60+2]}>>1 | x[58] | ={x[58]+x[62]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[56+3] | ={x[56+3]+x[60+3]}>>1 | x[59] | ={x[59]+x[63]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[60+2(1)] | = {(x[60+2(1)]-x[56+2(1)])t[(32)(1)]-(x[56+2(1)+1]-x[60+2(1)+1])t[(32)(1)+1]}>>1 | x[60+2] | = {(x[60+2]-x[56+2])t[32]-(x[56+2+1]-x[60+2+1])t[32+1]}>>1 | x[62] | = {(x[62]-x[58])t[32]-(x[59]-x[63])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[60+2(1)+1] | = {(x[60+2(1)+1]-x[56+2(1)+1])t[(32)(1)]+(x[56+2(1)]-x[60+2(1)])t[(32)(1)+1]}>>1 | x[60+3] | = {(x[60+3]-x[56+3])t[32]+(x[56+2]-x[60+2])t[32+1]}>>1 | x[63] | = {(x[63]-x[59])t[32]+(x[58]-x[62])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,8,0) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=8 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(8) = 64. |
Odd base index o = e + 2N'P = 64 + 2(2) = 68. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+0] | ={x[64+0]+x[68+0]}>>1 | x[64] | ={x[64]+x[68]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+1] | ={x[64+1]+x[68+1]}>>1 | x[65] | ={x[65]+x[69]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[68+2(0)] | = {(x[68+2(0)]-x[64+2(0)])t[(32)(0)]-(x[64+2(0)+1]-x[68+2(0)+1])t[(32)(0)+1]}>>1 | x[68+0] | = {(x[68+0]-x[64+0])t[0]-(x[64+0+1]-x[68+0+1])t[0+1]}>>1 | x[68] | = {(x[68]-x[64])t[0]-(x[65]-x[69])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[68+2(0)+1] | = {(x[68+2(0)+1]-x[64+2(0)+1])t[(32)(0)]+(x[64+2(0)]-x[68+2(0)])t[(32)(0)+1]}>>1 | x[68+1] | = {(x[68+1]-x[64+1])t[0]+(x[64+0]-x[68+0])t[0+1]}>>1 | x[69] | = {(x[69]-x[65])t[0]+(x[64]-x[68])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,8,1) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=8 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(8) = 64. |
Odd base index o = e + 2N'P = 64 + 2(2) = 68. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+2] | ={x[64+2]+x[68+2]}>>1 | x[66] | ={x[66]+x[70]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+3] | ={x[64+3]+x[68+3]}>>1 | x[67] | ={x[67]+x[71]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[68+2(1)] | = {(x[68+2(1)]-x[64+2(1)])t[(32)(1)]-(x[64+2(1)+1]-x[68+2(1)+1])t[(32)(1)+1]}>>1 | x[68+2] | = {(x[68+2]-x[64+2])t[32]-(x[64+2+1]-x[68+2+1])t[32+1]}>>1 | x[70] | = {(x[70]-x[66])t[32]-(x[67]-x[71])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[68+2(1)+1] | = {(x[68+2(1)+1]-x[64+2(1)+1])t[(32)(1)]+(x[64+2(1)]-x[68+2(1)])t[(32)(1)+1]}>>1 | x[68+3] | = {(x[68+3]-x[64+3])t[32]+(x[64+2]-x[68+2])t[32+1]}>>1 | x[71] | = {(x[71]-x[67])t[32]+(x[66]-x[70])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,9,0) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=9 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(9) = 72. |
Odd base index o = e + 2N'P = 72 + 2(2) = 76. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[72+0] | ={x[72+0]+x[76+0]}>>1 | x[72] | ={x[72]+x[76]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[72+1] | ={x[72+1]+x[76+1]}>>1 | x[73] | ={x[73]+x[77]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[76+2(0)] | = {(x[76+2(0)]-x[72+2(0)])t[(32)(0)]-(x[72+2(0)+1]-x[76+2(0)+1])t[(32)(0)+1]}>>1 | x[76+0] | = {(x[76+0]-x[72+0])t[0]-(x[72+0+1]-x[76+0+1])t[0+1]}>>1 | x[76] | = {(x[76]-x[72])t[0]-(x[73]-x[77])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[76+2(0)+1] | = {(x[76+2(0)+1]-x[72+2(0)+1])t[(32)(0)]+(x[72+2(0)]-x[76+2(0)])t[(32)(0)+1]}>>1 | x[76+1] | = {(x[76+1]-x[72+1])t[0]+(x[72+0]-x[76+0])t[0+1]}>>1 | x[77] | = {(x[77]-x[73])t[0]+(x[72]-x[76])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,9,1) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=9 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(9) = 72. |
Odd base index o = e + 2N'P = 72 + 2(2) = 76. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[72+2] | ={x[72+2]+x[76+2]}>>1 | x[74] | ={x[74]+x[78]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[72+3] | ={x[72+3]+x[76+3]}>>1 | x[75] | ={x[75]+x[79]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[76+2(1)] | = {(x[76+2(1)]-x[72+2(1)])t[(32)(1)]-(x[72+2(1)+1]-x[76+2(1)+1])t[(32)(1)+1]}>>1 | x[76+2] | = {(x[76+2]-x[72+2])t[32]-(x[72+2+1]-x[76+2+1])t[32+1]}>>1 | x[78] | = {(x[78]-x[74])t[32]-(x[75]-x[79])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[76+2(1)+1] | = {(x[76+2(1)+1]-x[72+2(1)+1])t[(32)(1)]+(x[72+2(1)]-x[76+2(1)])t[(32)(1)+1]}>>1 | x[76+3] | = {(x[76+3]-x[72+3])t[32]+(x[72+2]-x[76+2])t[32+1]}>>1 | x[79] | = {(x[79]-x[75])t[32]+(x[74]-x[78])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,10,0) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=10 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(10) = 80. |
Odd base index o = e + 2N'P = 80 + 2(2) = 84. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[80+0] | ={x[80+0]+x[84+0]}>>1 | x[80] | ={x[80]+x[84]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[80+1] | ={x[80+1]+x[84+1]}>>1 | x[81] | ={x[81]+x[85]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[84+2(0)] | = {(x[84+2(0)]-x[80+2(0)])t[(32)(0)]-(x[80+2(0)+1]-x[84+2(0)+1])t[(32)(0)+1]}>>1 | x[84+0] | = {(x[84+0]-x[80+0])t[0]-(x[80+0+1]-x[84+0+1])t[0+1]}>>1 | x[84] | = {(x[84]-x[80])t[0]-(x[81]-x[85])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[84+2(0)+1] | = {(x[84+2(0)+1]-x[80+2(0)+1])t[(32)(0)]+(x[80+2(0)]-x[84+2(0)])t[(32)(0)+1]}>>1 | x[84+1] | = {(x[84+1]-x[80+1])t[0]+(x[80+0]-x[84+0])t[0+1]}>>1 | x[85] | = {(x[85]-x[81])t[0]+(x[80]-x[84])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,10,1) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=10 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(10) = 80. |
Odd base index o = e + 2N'P = 80 + 2(2) = 84. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[80+2] | ={x[80+2]+x[84+2]}>>1 | x[82] | ={x[82]+x[86]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[80+3] | ={x[80+3]+x[84+3]}>>1 | x[83] | ={x[83]+x[87]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[84+2(1)] | = {(x[84+2(1)]-x[80+2(1)])t[(32)(1)]-(x[80+2(1)+1]-x[84+2(1)+1])t[(32)(1)+1]}>>1 | x[84+2] | = {(x[84+2]-x[80+2])t[32]-(x[80+2+1]-x[84+2+1])t[32+1]}>>1 | x[86] | = {(x[86]-x[82])t[32]-(x[83]-x[87])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[84+2(1)+1] | = {(x[84+2(1)+1]-x[80+2(1)+1])t[(32)(1)]+(x[80+2(1)]-x[84+2(1)])t[(32)(1)+1]}>>1 | x[84+3] | = {(x[84+3]-x[80+3])t[32]+(x[80+2]-x[84+2])t[32+1]}>>1 | x[87] | = {(x[87]-x[83])t[32]+(x[82]-x[86])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,11,0) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=11 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(11) = 88. |
Odd base index o = e + 2N'P = 88 + 2(2) = 92. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[88+0] | ={x[88+0]+x[92+0]}>>1 | x[88] | ={x[88]+x[92]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[88+1] | ={x[88+1]+x[92+1]}>>1 | x[89] | ={x[89]+x[93]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[92+2(0)] | = {(x[92+2(0)]-x[88+2(0)])t[(32)(0)]-(x[88+2(0)+1]-x[92+2(0)+1])t[(32)(0)+1]}>>1 | x[92+0] | = {(x[92+0]-x[88+0])t[0]-(x[88+0+1]-x[92+0+1])t[0+1]}>>1 | x[92] | = {(x[92]-x[88])t[0]-(x[89]-x[93])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[92+2(0)+1] | = {(x[92+2(0)+1]-x[88+2(0)+1])t[(32)(0)]+(x[88+2(0)]-x[92+2(0)])t[(32)(0)+1]}>>1 | x[92+1] | = {(x[92+1]-x[88+1])t[0]+(x[88+0]-x[92+0])t[0+1]}>>1 | x[93] | = {(x[93]-x[89])t[0]+(x[88]-x[92])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,11,1) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=11 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(11) = 88. |
Odd base index o = e + 2N'P = 88 + 2(2) = 92. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[88+2] | ={x[88+2]+x[92+2]}>>1 | x[90] | ={x[90]+x[94]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[88+3] | ={x[88+3]+x[92+3]}>>1 | x[91] | ={x[91]+x[95]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[92+2(1)] | = {(x[92+2(1)]-x[88+2(1)])t[(32)(1)]-(x[88+2(1)+1]-x[92+2(1)+1])t[(32)(1)+1]}>>1 | x[92+2] | = {(x[92+2]-x[88+2])t[32]-(x[88+2+1]-x[92+2+1])t[32+1]}>>1 | x[94] | = {(x[94]-x[90])t[32]-(x[91]-x[95])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[92+2(1)+1] | = {(x[92+2(1)+1]-x[88+2(1)+1])t[(32)(1)]+(x[88+2(1)]-x[92+2(1)])t[(32)(1)+1]}>>1 | x[92+3] | = {(x[92+3]-x[88+3])t[32]+(x[88+2]-x[92+2])t[32+1]}>>1 | x[95] | = {(x[95]-x[91])t[32]+(x[90]-x[94])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,12,0) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=12 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(12) = 96. |
Odd base index o = e + 2N'P = 96 + 2(2) = 100. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[96+0] | ={x[96+0]+x[100+0]}>>1 | x[96] | ={x[96]+x[100]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[96+1] | ={x[96+1]+x[100+1]}>>1 | x[97] | ={x[97]+x[101]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[100+2(0)] | = {(x[100+2(0)]-x[96+2(0)])t[(32)(0)]-(x[96+2(0)+1]-x[100+2(0)+1])t[(32)(0)+1]}>>1 | x[100+0] | = {(x[100+0]-x[96+0])t[0]-(x[96+0+1]-x[100+0+1])t[0+1]}>>1 | x[100] | = {(x[100]-x[96])t[0]-(x[97]-x[101])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[100+2(0)+1] | = {(x[100+2(0)+1]-x[96+2(0)+1])t[(32)(0)]+(x[96+2(0)]-x[100+2(0)])t[(32)(0)+1]}>>1 | x[100+1] | = {(x[100+1]-x[96+1])t[0]+(x[96+0]-x[100+0])t[0+1]}>>1 | x[101] | = {(x[101]-x[97])t[0]+(x[96]-x[100])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,12,1) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=12 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(12) = 96. |
Odd base index o = e + 2N'P = 96 + 2(2) = 100. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[96+2] | ={x[96+2]+x[100+2]}>>1 | x[98] | ={x[98]+x[102]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[96+3] | ={x[96+3]+x[100+3]}>>1 | x[99] | ={x[99]+x[103]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[100+2(1)] | = {(x[100+2(1)]-x[96+2(1)])t[(32)(1)]-(x[96+2(1)+1]-x[100+2(1)+1])t[(32)(1)+1]}>>1 | x[100+2] | = {(x[100+2]-x[96+2])t[32]-(x[96+2+1]-x[100+2+1])t[32+1]}>>1 | x[102] | = {(x[102]-x[98])t[32]-(x[99]-x[103])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[100+2(1)+1] | = {(x[100+2(1)+1]-x[96+2(1)+1])t[(32)(1)]+(x[96+2(1)]-x[100+2(1)])t[(32)(1)+1]}>>1 | x[100+3] | = {(x[100+3]-x[96+3])t[32]+(x[96+2]-x[100+2])t[32+1]}>>1 | x[103] | = {(x[103]-x[99])t[32]+(x[98]-x[102])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,13,0) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=13 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(13) = 104. |
Odd base index o = e + 2N'P = 104 + 2(2) = 108. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[104+0] | ={x[104+0]+x[108+0]}>>1 | x[104] | ={x[104]+x[108]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[104+1] | ={x[104+1]+x[108+1]}>>1 | x[105] | ={x[105]+x[109]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[108+2(0)] | = {(x[108+2(0)]-x[104+2(0)])t[(32)(0)]-(x[104+2(0)+1]-x[108+2(0)+1])t[(32)(0)+1]}>>1 | x[108+0] | = {(x[108+0]-x[104+0])t[0]-(x[104+0+1]-x[108+0+1])t[0+1]}>>1 | x[108] | = {(x[108]-x[104])t[0]-(x[105]-x[109])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[108+2(0)+1] | = {(x[108+2(0)+1]-x[104+2(0)+1])t[(32)(0)]+(x[104+2(0)]-x[108+2(0)])t[(32)(0)+1]}>>1 | x[108+1] | = {(x[108+1]-x[104+1])t[0]+(x[104+0]-x[108+0])t[0+1]}>>1 | x[109] | = {(x[109]-x[105])t[0]+(x[104]-x[108])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,13,1) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=13 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(13) = 104. |
Odd base index o = e + 2N'P = 104 + 2(2) = 108. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[104+2] | ={x[104+2]+x[108+2]}>>1 | x[106] | ={x[106]+x[110]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[104+3] | ={x[104+3]+x[108+3]}>>1 | x[107] | ={x[107]+x[111]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[108+2(1)] | = {(x[108+2(1)]-x[104+2(1)])t[(32)(1)]-(x[104+2(1)+1]-x[108+2(1)+1])t[(32)(1)+1]}>>1 | x[108+2] | = {(x[108+2]-x[104+2])t[32]-(x[104+2+1]-x[108+2+1])t[32+1]}>>1 | x[110] | = {(x[110]-x[106])t[32]-(x[107]-x[111])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[108+2(1)+1] | = {(x[108+2(1)+1]-x[104+2(1)+1])t[(32)(1)]+(x[104+2(1)]-x[108+2(1)])t[(32)(1)+1]}>>1 | x[108+3] | = {(x[108+3]-x[104+3])t[32]+(x[104+2]-x[108+2])t[32+1]}>>1 | x[111] | = {(x[111]-x[107])t[32]+(x[106]-x[110])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,14,0) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=14 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(14) = 112. |
Odd base index o = e + 2N'P = 112 + 2(2) = 116. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[112+0] | ={x[112+0]+x[116+0]}>>1 | x[112] | ={x[112]+x[116]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[112+1] | ={x[112+1]+x[116+1]}>>1 | x[113] | ={x[113]+x[117]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[116+2(0)] | = {(x[116+2(0)]-x[112+2(0)])t[(32)(0)]-(x[112+2(0)+1]-x[116+2(0)+1])t[(32)(0)+1]}>>1 | x[116+0] | = {(x[116+0]-x[112+0])t[0]-(x[112+0+1]-x[116+0+1])t[0+1]}>>1 | x[116] | = {(x[116]-x[112])t[0]-(x[113]-x[117])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[116+2(0)+1] | = {(x[116+2(0)+1]-x[112+2(0)+1])t[(32)(0)]+(x[112+2(0)]-x[116+2(0)])t[(32)(0)+1]}>>1 | x[116+1] | = {(x[116+1]-x[112+1])t[0]+(x[112+0]-x[116+0])t[0+1]}>>1 | x[117] | = {(x[117]-x[113])t[0]+(x[112]-x[116])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,14,1) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=14 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(14) = 112. |
Odd base index o = e + 2N'P = 112 + 2(2) = 116. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[112+2] | ={x[112+2]+x[116+2]}>>1 | x[114] | ={x[114]+x[118]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[112+3] | ={x[112+3]+x[116+3]}>>1 | x[115] | ={x[115]+x[119]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[116+2(1)] | = {(x[116+2(1)]-x[112+2(1)])t[(32)(1)]-(x[112+2(1)+1]-x[116+2(1)+1])t[(32)(1)+1]}>>1 | x[116+2] | = {(x[116+2]-x[112+2])t[32]-(x[112+2+1]-x[116+2+1])t[32+1]}>>1 | x[118] | = {(x[118]-x[114])t[32]-(x[115]-x[119])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[116+2(1)+1] | = {(x[116+2(1)+1]-x[112+2(1)+1])t[(32)(1)]+(x[112+2(1)]-x[116+2(1)])t[(32)(1)+1]}>>1 | x[116+3] | = {(x[116+3]-x[112+3])t[32]+(x[112+2]-x[116+2])t[32+1]}>>1 | x[119] | = {(x[119]-x[115])t[32]+(x[114]-x[118])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,15,0) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=15 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(15) = 120. |
Odd base index o = e + 2N'P = 120 + 2(2) = 124. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[120+0] | ={x[120+0]+x[124+0]}>>1 | x[120] | ={x[120]+x[124]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[120+1] | ={x[120+1]+x[124+1]}>>1 | x[121] | ={x[121]+x[125]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[124+2(0)] | = {(x[124+2(0)]-x[120+2(0)])t[(32)(0)]-(x[120+2(0)+1]-x[124+2(0)+1])t[(32)(0)+1]}>>1 | x[124+0] | = {(x[124+0]-x[120+0])t[0]-(x[120+0+1]-x[124+0+1])t[0+1]}>>1 | x[124] | = {(x[124]-x[120])t[0]-(x[121]-x[125])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[124+2(0)+1] | = {(x[124+2(0)+1]-x[120+2(0)+1])t[(32)(0)]+(x[120+2(0)]-x[124+2(0)])t[(32)(0)+1]}>>1 | x[124+1] | = {(x[124+1]-x[120+1])t[0]+(x[120+0]-x[124+0])t[0+1]}>>1 | x[125] | = {(x[125]-x[121])t[0]+(x[120]-x[124])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(4,15,1) |
Loop P=4 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=15 of BP=B4=2P=24=16 subblocks, indexed b=0...B4-1=0...15. |
Subblock size=NP|P=4=N4=N/BP|(N=64,P=4)=(2p/2P)|(p=6,P=4)=2p-P|(p=6,P=4)=26-4=4. |
Butterfly n=1 of N'P=NP/2=2p-P-1=26-4-1=2 butterflies indexed by n=0...N'P-1=0...1. |
Even base index e = 2NPb = 2(4)(15) = 120. |
Odd base index o = e + 2N'P = 120 + 2(2) = 124. |
Twiddle step size s = 2P+1 = 24+1 = 32. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[120+2] | ={x[120+2]+x[124+2]}>>1 | x[122] | ={x[122]+x[126]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[120+3] | ={x[120+3]+x[124+3]}>>1 | x[123] | ={x[123]+x[127]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[124+2(1)] | = {(x[124+2(1)]-x[120+2(1)])t[(32)(1)]-(x[120+2(1)+1]-x[124+2(1)+1])t[(32)(1)+1]}>>1 | x[124+2] | = {(x[124+2]-x[120+2])t[32]-(x[120+2+1]-x[124+2+1])t[32+1]}>>1 | x[126] | = {(x[126]-x[122])t[32]-(x[123]-x[127])t[33]}>>1 | | = {(0000-0000)ffff-(0000-0000)8000}>>1 | | = {(00000)ffff-(00000)8000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[124+2(1)+1] | = {(x[124+2(1)+1]-x[120+2(1)+1])t[(32)(1)]+(x[120+2(1)]-x[124+2(1)])t[(32)(1)+1]}>>1 | x[124+3] | = {(x[124+3]-x[120+3])t[32]+(x[120+2]-x[124+2])t[32+1]}>>1 | x[127] | = {(x[127]-x[123])t[32]+(x[122]-x[126])t[33]}>>1 | | = {(0000-0000)ffff+(0000-0000)8000}>>1 | | = {(00000)ffff+(00000)8000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
Return to Table of Contents