64-point radix-2 fixed-point DIF FFT IV-KAT Tables (continued)
John Bryan
(P,b,n)=(5,0,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=0 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(0) = 0. |
Odd base index o = e + 2N'P = 0 + 2(1) = 2. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[0+0] | ={x[0+0]+x[2+0]}>>1 | x[0] | ={x[0]+x[2]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[0+1] | ={x[0+1]+x[2+1]}>>1 | x[1] | ={x[1]+x[3]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[2+2(0)] | = {(x[2+2(0)]-x[0+2(0)])t[(64)(0)]-(x[0+2(0)+1]-x[2+2(0)+1])t[(64)(0)+1]}>>1 | x[2+0] | = {(x[2+0]-x[0+0])t[0]-(x[0+0+1]-x[2+0+1])t[0+1]}>>1 | x[2] | = {(x[2]-x[0])t[0]-(x[1]-x[3])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[2+2(0)+1] | = {(x[2+2(0)+1]-x[0+2(0)+1])t[(64)(0)]+(x[0+2(0)]-x[2+2(0)])t[(64)(0)+1]}>>1 | x[2+1] | = {(x[2+1]-x[0+1])t[0]+(x[0+0]-x[2+0])t[0+1]}>>1 | x[3] | = {(x[3]-x[1])t[0]+(x[0]-x[2])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,1,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=1 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(1) = 4. |
Odd base index o = e + 2N'P = 4 + 2(1) = 6. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[4+0] | ={x[4+0]+x[6+0]}>>1 | x[4] | ={x[4]+x[6]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[4+1] | ={x[4+1]+x[6+1]}>>1 | x[5] | ={x[5]+x[7]}>>1 | | ={0000 +e000}>>1 | | ={fe000}>>1 | | =f000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[6+2(0)] | = {(x[6+2(0)]-x[4+2(0)])t[(64)(0)]-(x[4+2(0)+1]-x[6+2(0)+1])t[(64)(0)+1]}>>1 | x[6+0] | = {(x[6+0]-x[4+0])t[0]-(x[4+0+1]-x[6+0+1])t[0+1]}>>1 | x[6] | = {(x[6]-x[4])t[0]-(x[5]-x[7])t[1]}>>1 | | = {(0000-0000)8000-(0000-e000)0000}>>1 | | = {(00000)8000-(02000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[6+2(0)+1] | = {(x[6+2(0)+1]-x[4+2(0)+1])t[(64)(0)]+(x[4+2(0)]-x[6+2(0)])t[(64)(0)+1]}>>1 | x[6+1] | = {(x[6+1]-x[4+1])t[0]+(x[4+0]-x[6+0])t[0+1]}>>1 | x[7] | = {(x[7]-x[5])t[0]+(x[4]-x[6])t[1]}>>1 | | = {(e000-0000)8000+(0000-0000)0000}>>1 | | = {(fe000)8000+(00000)0000}>>1 | | = {02000+00000}>>1 | | = {02000}>>1 | | = 1000 | |
Return to Table of Contents
(P,b,n)=(5,2,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=2 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(2) = 8. |
Odd base index o = e + 2N'P = 8 + 2(1) = 10. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[8+0] | ={x[8+0]+x[10+0]}>>1 | x[8] | ={x[8]+x[10]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[8+1] | ={x[8+1]+x[10+1]}>>1 | x[9] | ={x[9]+x[11]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[10+2(0)] | = {(x[10+2(0)]-x[8+2(0)])t[(64)(0)]-(x[8+2(0)+1]-x[10+2(0)+1])t[(64)(0)+1]}>>1 | x[10+0] | = {(x[10+0]-x[8+0])t[0]-(x[8+0+1]-x[10+0+1])t[0+1]}>>1 | x[10] | = {(x[10]-x[8])t[0]-(x[9]-x[11])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[10+2(0)+1] | = {(x[10+2(0)+1]-x[8+2(0)+1])t[(64)(0)]+(x[8+2(0)]-x[10+2(0)])t[(64)(0)+1]}>>1 | x[10+1] | = {(x[10+1]-x[8+1])t[0]+(x[8+0]-x[10+0])t[0+1]}>>1 | x[11] | = {(x[11]-x[9])t[0]+(x[8]-x[10])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,3,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=3 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(3) = 12. |
Odd base index o = e + 2N'P = 12 + 2(1) = 14. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[12+0] | ={x[12+0]+x[14+0]}>>1 | x[12] | ={x[12]+x[14]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[12+1] | ={x[12+1]+x[14+1]}>>1 | x[13] | ={x[13]+x[15]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[14+2(0)] | = {(x[14+2(0)]-x[12+2(0)])t[(64)(0)]-(x[12+2(0)+1]-x[14+2(0)+1])t[(64)(0)+1]}>>1 | x[14+0] | = {(x[14+0]-x[12+0])t[0]-(x[12+0+1]-x[14+0+1])t[0+1]}>>1 | x[14] | = {(x[14]-x[12])t[0]-(x[13]-x[15])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[14+2(0)+1] | = {(x[14+2(0)+1]-x[12+2(0)+1])t[(64)(0)]+(x[12+2(0)]-x[14+2(0)])t[(64)(0)+1]}>>1 | x[14+1] | = {(x[14+1]-x[12+1])t[0]+(x[12+0]-x[14+0])t[0+1]}>>1 | x[15] | = {(x[15]-x[13])t[0]+(x[12]-x[14])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,4,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=4 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(4) = 16. |
Odd base index o = e + 2N'P = 16 + 2(1) = 18. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[16+0] | ={x[16+0]+x[18+0]}>>1 | x[16] | ={x[16]+x[18]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[16+1] | ={x[16+1]+x[18+1]}>>1 | x[17] | ={x[17]+x[19]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[18+2(0)] | = {(x[18+2(0)]-x[16+2(0)])t[(64)(0)]-(x[16+2(0)+1]-x[18+2(0)+1])t[(64)(0)+1]}>>1 | x[18+0] | = {(x[18+0]-x[16+0])t[0]-(x[16+0+1]-x[18+0+1])t[0+1]}>>1 | x[18] | = {(x[18]-x[16])t[0]-(x[17]-x[19])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[18+2(0)+1] | = {(x[18+2(0)+1]-x[16+2(0)+1])t[(64)(0)]+(x[16+2(0)]-x[18+2(0)])t[(64)(0)+1]}>>1 | x[18+1] | = {(x[18+1]-x[16+1])t[0]+(x[16+0]-x[18+0])t[0+1]}>>1 | x[19] | = {(x[19]-x[17])t[0]+(x[16]-x[18])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,5,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=5 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(5) = 20. |
Odd base index o = e + 2N'P = 20 + 2(1) = 22. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[20+0] | ={x[20+0]+x[22+0]}>>1 | x[20] | ={x[20]+x[22]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[20+1] | ={x[20+1]+x[22+1]}>>1 | x[21] | ={x[21]+x[23]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[22+2(0)] | = {(x[22+2(0)]-x[20+2(0)])t[(64)(0)]-(x[20+2(0)+1]-x[22+2(0)+1])t[(64)(0)+1]}>>1 | x[22+0] | = {(x[22+0]-x[20+0])t[0]-(x[20+0+1]-x[22+0+1])t[0+1]}>>1 | x[22] | = {(x[22]-x[20])t[0]-(x[21]-x[23])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[22+2(0)+1] | = {(x[22+2(0)+1]-x[20+2(0)+1])t[(64)(0)]+(x[20+2(0)]-x[22+2(0)])t[(64)(0)+1]}>>1 | x[22+1] | = {(x[22+1]-x[20+1])t[0]+(x[20+0]-x[22+0])t[0+1]}>>1 | x[23] | = {(x[23]-x[21])t[0]+(x[20]-x[22])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,6,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=6 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(6) = 24. |
Odd base index o = e + 2N'P = 24 + 2(1) = 26. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[24+0] | ={x[24+0]+x[26+0]}>>1 | x[24] | ={x[24]+x[26]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[24+1] | ={x[24+1]+x[26+1]}>>1 | x[25] | ={x[25]+x[27]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[26+2(0)] | = {(x[26+2(0)]-x[24+2(0)])t[(64)(0)]-(x[24+2(0)+1]-x[26+2(0)+1])t[(64)(0)+1]}>>1 | x[26+0] | = {(x[26+0]-x[24+0])t[0]-(x[24+0+1]-x[26+0+1])t[0+1]}>>1 | x[26] | = {(x[26]-x[24])t[0]-(x[25]-x[27])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[26+2(0)+1] | = {(x[26+2(0)+1]-x[24+2(0)+1])t[(64)(0)]+(x[24+2(0)]-x[26+2(0)])t[(64)(0)+1]}>>1 | x[26+1] | = {(x[26+1]-x[24+1])t[0]+(x[24+0]-x[26+0])t[0+1]}>>1 | x[27] | = {(x[27]-x[25])t[0]+(x[24]-x[26])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,7,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=7 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(7) = 28. |
Odd base index o = e + 2N'P = 28 + 2(1) = 30. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[28+0] | ={x[28+0]+x[30+0]}>>1 | x[28] | ={x[28]+x[30]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[28+1] | ={x[28+1]+x[30+1]}>>1 | x[29] | ={x[29]+x[31]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[30+2(0)] | = {(x[30+2(0)]-x[28+2(0)])t[(64)(0)]-(x[28+2(0)+1]-x[30+2(0)+1])t[(64)(0)+1]}>>1 | x[30+0] | = {(x[30+0]-x[28+0])t[0]-(x[28+0+1]-x[30+0+1])t[0+1]}>>1 | x[30] | = {(x[30]-x[28])t[0]-(x[29]-x[31])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[30+2(0)+1] | = {(x[30+2(0)+1]-x[28+2(0)+1])t[(64)(0)]+(x[28+2(0)]-x[30+2(0)])t[(64)(0)+1]}>>1 | x[30+1] | = {(x[30+1]-x[28+1])t[0]+(x[28+0]-x[30+0])t[0+1]}>>1 | x[31] | = {(x[31]-x[29])t[0]+(x[28]-x[30])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,8,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=8 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(8) = 32. |
Odd base index o = e + 2N'P = 32 + 2(1) = 34. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[32+0] | ={x[32+0]+x[34+0]}>>1 | x[32] | ={x[32]+x[34]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[32+1] | ={x[32+1]+x[34+1]}>>1 | x[33] | ={x[33]+x[35]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[34+2(0)] | = {(x[34+2(0)]-x[32+2(0)])t[(64)(0)]-(x[32+2(0)+1]-x[34+2(0)+1])t[(64)(0)+1]}>>1 | x[34+0] | = {(x[34+0]-x[32+0])t[0]-(x[32+0+1]-x[34+0+1])t[0+1]}>>1 | x[34] | = {(x[34]-x[32])t[0]-(x[33]-x[35])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[34+2(0)+1] | = {(x[34+2(0)+1]-x[32+2(0)+1])t[(64)(0)]+(x[32+2(0)]-x[34+2(0)])t[(64)(0)+1]}>>1 | x[34+1] | = {(x[34+1]-x[32+1])t[0]+(x[32+0]-x[34+0])t[0+1]}>>1 | x[35] | = {(x[35]-x[33])t[0]+(x[32]-x[34])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,9,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=9 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(9) = 36. |
Odd base index o = e + 2N'P = 36 + 2(1) = 38. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[36+0] | ={x[36+0]+x[38+0]}>>1 | x[36] | ={x[36]+x[38]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[36+1] | ={x[36+1]+x[38+1]}>>1 | x[37] | ={x[37]+x[39]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[38+2(0)] | = {(x[38+2(0)]-x[36+2(0)])t[(64)(0)]-(x[36+2(0)+1]-x[38+2(0)+1])t[(64)(0)+1]}>>1 | x[38+0] | = {(x[38+0]-x[36+0])t[0]-(x[36+0+1]-x[38+0+1])t[0+1]}>>1 | x[38] | = {(x[38]-x[36])t[0]-(x[37]-x[39])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[38+2(0)+1] | = {(x[38+2(0)+1]-x[36+2(0)+1])t[(64)(0)]+(x[36+2(0)]-x[38+2(0)])t[(64)(0)+1]}>>1 | x[38+1] | = {(x[38+1]-x[36+1])t[0]+(x[36+0]-x[38+0])t[0+1]}>>1 | x[39] | = {(x[39]-x[37])t[0]+(x[36]-x[38])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,10,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=10 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(10) = 40. |
Odd base index o = e + 2N'P = 40 + 2(1) = 42. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[40+0] | ={x[40+0]+x[42+0]}>>1 | x[40] | ={x[40]+x[42]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[40+1] | ={x[40+1]+x[42+1]}>>1 | x[41] | ={x[41]+x[43]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[42+2(0)] | = {(x[42+2(0)]-x[40+2(0)])t[(64)(0)]-(x[40+2(0)+1]-x[42+2(0)+1])t[(64)(0)+1]}>>1 | x[42+0] | = {(x[42+0]-x[40+0])t[0]-(x[40+0+1]-x[42+0+1])t[0+1]}>>1 | x[42] | = {(x[42]-x[40])t[0]-(x[41]-x[43])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[42+2(0)+1] | = {(x[42+2(0)+1]-x[40+2(0)+1])t[(64)(0)]+(x[40+2(0)]-x[42+2(0)])t[(64)(0)+1]}>>1 | x[42+1] | = {(x[42+1]-x[40+1])t[0]+(x[40+0]-x[42+0])t[0+1]}>>1 | x[43] | = {(x[43]-x[41])t[0]+(x[40]-x[42])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,11,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=11 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(11) = 44. |
Odd base index o = e + 2N'P = 44 + 2(1) = 46. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[44+0] | ={x[44+0]+x[46+0]}>>1 | x[44] | ={x[44]+x[46]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[44+1] | ={x[44+1]+x[46+1]}>>1 | x[45] | ={x[45]+x[47]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[46+2(0)] | = {(x[46+2(0)]-x[44+2(0)])t[(64)(0)]-(x[44+2(0)+1]-x[46+2(0)+1])t[(64)(0)+1]}>>1 | x[46+0] | = {(x[46+0]-x[44+0])t[0]-(x[44+0+1]-x[46+0+1])t[0+1]}>>1 | x[46] | = {(x[46]-x[44])t[0]-(x[45]-x[47])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[46+2(0)+1] | = {(x[46+2(0)+1]-x[44+2(0)+1])t[(64)(0)]+(x[44+2(0)]-x[46+2(0)])t[(64)(0)+1]}>>1 | x[46+1] | = {(x[46+1]-x[44+1])t[0]+(x[44+0]-x[46+0])t[0+1]}>>1 | x[47] | = {(x[47]-x[45])t[0]+(x[44]-x[46])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,12,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=12 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(12) = 48. |
Odd base index o = e + 2N'P = 48 + 2(1) = 50. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[48+0] | ={x[48+0]+x[50+0]}>>1 | x[48] | ={x[48]+x[50]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[48+1] | ={x[48+1]+x[50+1]}>>1 | x[49] | ={x[49]+x[51]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[50+2(0)] | = {(x[50+2(0)]-x[48+2(0)])t[(64)(0)]-(x[48+2(0)+1]-x[50+2(0)+1])t[(64)(0)+1]}>>1 | x[50+0] | = {(x[50+0]-x[48+0])t[0]-(x[48+0+1]-x[50+0+1])t[0+1]}>>1 | x[50] | = {(x[50]-x[48])t[0]-(x[49]-x[51])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[50+2(0)+1] | = {(x[50+2(0)+1]-x[48+2(0)+1])t[(64)(0)]+(x[48+2(0)]-x[50+2(0)])t[(64)(0)+1]}>>1 | x[50+1] | = {(x[50+1]-x[48+1])t[0]+(x[48+0]-x[50+0])t[0+1]}>>1 | x[51] | = {(x[51]-x[49])t[0]+(x[48]-x[50])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,13,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=13 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(13) = 52. |
Odd base index o = e + 2N'P = 52 + 2(1) = 54. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[52+0] | ={x[52+0]+x[54+0]}>>1 | x[52] | ={x[52]+x[54]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[52+1] | ={x[52+1]+x[54+1]}>>1 | x[53] | ={x[53]+x[55]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[54+2(0)] | = {(x[54+2(0)]-x[52+2(0)])t[(64)(0)]-(x[52+2(0)+1]-x[54+2(0)+1])t[(64)(0)+1]}>>1 | x[54+0] | = {(x[54+0]-x[52+0])t[0]-(x[52+0+1]-x[54+0+1])t[0+1]}>>1 | x[54] | = {(x[54]-x[52])t[0]-(x[53]-x[55])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[54+2(0)+1] | = {(x[54+2(0)+1]-x[52+2(0)+1])t[(64)(0)]+(x[52+2(0)]-x[54+2(0)])t[(64)(0)+1]}>>1 | x[54+1] | = {(x[54+1]-x[52+1])t[0]+(x[52+0]-x[54+0])t[0+1]}>>1 | x[55] | = {(x[55]-x[53])t[0]+(x[52]-x[54])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,14,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=14 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(14) = 56. |
Odd base index o = e + 2N'P = 56 + 2(1) = 58. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[56+0] | ={x[56+0]+x[58+0]}>>1 | x[56] | ={x[56]+x[58]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[56+1] | ={x[56+1]+x[58+1]}>>1 | x[57] | ={x[57]+x[59]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[58+2(0)] | = {(x[58+2(0)]-x[56+2(0)])t[(64)(0)]-(x[56+2(0)+1]-x[58+2(0)+1])t[(64)(0)+1]}>>1 | x[58+0] | = {(x[58+0]-x[56+0])t[0]-(x[56+0+1]-x[58+0+1])t[0+1]}>>1 | x[58] | = {(x[58]-x[56])t[0]-(x[57]-x[59])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[58+2(0)+1] | = {(x[58+2(0)+1]-x[56+2(0)+1])t[(64)(0)]+(x[56+2(0)]-x[58+2(0)])t[(64)(0)+1]}>>1 | x[58+1] | = {(x[58+1]-x[56+1])t[0]+(x[56+0]-x[58+0])t[0+1]}>>1 | x[59] | = {(x[59]-x[57])t[0]+(x[56]-x[58])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,15,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=15 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(15) = 60. |
Odd base index o = e + 2N'P = 60 + 2(1) = 62. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[60+0] | ={x[60+0]+x[62+0]}>>1 | x[60] | ={x[60]+x[62]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[60+1] | ={x[60+1]+x[62+1]}>>1 | x[61] | ={x[61]+x[63]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[62+2(0)] | = {(x[62+2(0)]-x[60+2(0)])t[(64)(0)]-(x[60+2(0)+1]-x[62+2(0)+1])t[(64)(0)+1]}>>1 | x[62+0] | = {(x[62+0]-x[60+0])t[0]-(x[60+0+1]-x[62+0+1])t[0+1]}>>1 | x[62] | = {(x[62]-x[60])t[0]-(x[61]-x[63])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[62+2(0)+1] | = {(x[62+2(0)+1]-x[60+2(0)+1])t[(64)(0)]+(x[60+2(0)]-x[62+2(0)])t[(64)(0)+1]}>>1 | x[62+1] | = {(x[62+1]-x[60+1])t[0]+(x[60+0]-x[62+0])t[0+1]}>>1 | x[63] | = {(x[63]-x[61])t[0]+(x[60]-x[62])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,16,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=16 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(16) = 64. |
Odd base index o = e + 2N'P = 64 + 2(1) = 66. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[64+0] | ={x[64+0]+x[66+0]}>>1 | x[64] | ={x[64]+x[66]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[64+1] | ={x[64+1]+x[66+1]}>>1 | x[65] | ={x[65]+x[67]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[66+2(0)] | = {(x[66+2(0)]-x[64+2(0)])t[(64)(0)]-(x[64+2(0)+1]-x[66+2(0)+1])t[(64)(0)+1]}>>1 | x[66+0] | = {(x[66+0]-x[64+0])t[0]-(x[64+0+1]-x[66+0+1])t[0+1]}>>1 | x[66] | = {(x[66]-x[64])t[0]-(x[65]-x[67])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[66+2(0)+1] | = {(x[66+2(0)+1]-x[64+2(0)+1])t[(64)(0)]+(x[64+2(0)]-x[66+2(0)])t[(64)(0)+1]}>>1 | x[66+1] | = {(x[66+1]-x[64+1])t[0]+(x[64+0]-x[66+0])t[0+1]}>>1 | x[67] | = {(x[67]-x[65])t[0]+(x[64]-x[66])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,17,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=17 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(17) = 68. |
Odd base index o = e + 2N'P = 68 + 2(1) = 70. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[68+0] | ={x[68+0]+x[70+0]}>>1 | x[68] | ={x[68]+x[70]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[68+1] | ={x[68+1]+x[70+1]}>>1 | x[69] | ={x[69]+x[71]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[70+2(0)] | = {(x[70+2(0)]-x[68+2(0)])t[(64)(0)]-(x[68+2(0)+1]-x[70+2(0)+1])t[(64)(0)+1]}>>1 | x[70+0] | = {(x[70+0]-x[68+0])t[0]-(x[68+0+1]-x[70+0+1])t[0+1]}>>1 | x[70] | = {(x[70]-x[68])t[0]-(x[69]-x[71])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[70+2(0)+1] | = {(x[70+2(0)+1]-x[68+2(0)+1])t[(64)(0)]+(x[68+2(0)]-x[70+2(0)])t[(64)(0)+1]}>>1 | x[70+1] | = {(x[70+1]-x[68+1])t[0]+(x[68+0]-x[70+0])t[0+1]}>>1 | x[71] | = {(x[71]-x[69])t[0]+(x[68]-x[70])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,18,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=18 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(18) = 72. |
Odd base index o = e + 2N'P = 72 + 2(1) = 74. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[72+0] | ={x[72+0]+x[74+0]}>>1 | x[72] | ={x[72]+x[74]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[72+1] | ={x[72+1]+x[74+1]}>>1 | x[73] | ={x[73]+x[75]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[74+2(0)] | = {(x[74+2(0)]-x[72+2(0)])t[(64)(0)]-(x[72+2(0)+1]-x[74+2(0)+1])t[(64)(0)+1]}>>1 | x[74+0] | = {(x[74+0]-x[72+0])t[0]-(x[72+0+1]-x[74+0+1])t[0+1]}>>1 | x[74] | = {(x[74]-x[72])t[0]-(x[73]-x[75])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[74+2(0)+1] | = {(x[74+2(0)+1]-x[72+2(0)+1])t[(64)(0)]+(x[72+2(0)]-x[74+2(0)])t[(64)(0)+1]}>>1 | x[74+1] | = {(x[74+1]-x[72+1])t[0]+(x[72+0]-x[74+0])t[0+1]}>>1 | x[75] | = {(x[75]-x[73])t[0]+(x[72]-x[74])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,19,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=19 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(19) = 76. |
Odd base index o = e + 2N'P = 76 + 2(1) = 78. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[76+0] | ={x[76+0]+x[78+0]}>>1 | x[76] | ={x[76]+x[78]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[76+1] | ={x[76+1]+x[78+1]}>>1 | x[77] | ={x[77]+x[79]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[78+2(0)] | = {(x[78+2(0)]-x[76+2(0)])t[(64)(0)]-(x[76+2(0)+1]-x[78+2(0)+1])t[(64)(0)+1]}>>1 | x[78+0] | = {(x[78+0]-x[76+0])t[0]-(x[76+0+1]-x[78+0+1])t[0+1]}>>1 | x[78] | = {(x[78]-x[76])t[0]-(x[77]-x[79])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[78+2(0)+1] | = {(x[78+2(0)+1]-x[76+2(0)+1])t[(64)(0)]+(x[76+2(0)]-x[78+2(0)])t[(64)(0)+1]}>>1 | x[78+1] | = {(x[78+1]-x[76+1])t[0]+(x[76+0]-x[78+0])t[0+1]}>>1 | x[79] | = {(x[79]-x[77])t[0]+(x[76]-x[78])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,20,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=20 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(20) = 80. |
Odd base index o = e + 2N'P = 80 + 2(1) = 82. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[80+0] | ={x[80+0]+x[82+0]}>>1 | x[80] | ={x[80]+x[82]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[80+1] | ={x[80+1]+x[82+1]}>>1 | x[81] | ={x[81]+x[83]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[82+2(0)] | = {(x[82+2(0)]-x[80+2(0)])t[(64)(0)]-(x[80+2(0)+1]-x[82+2(0)+1])t[(64)(0)+1]}>>1 | x[82+0] | = {(x[82+0]-x[80+0])t[0]-(x[80+0+1]-x[82+0+1])t[0+1]}>>1 | x[82] | = {(x[82]-x[80])t[0]-(x[81]-x[83])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[82+2(0)+1] | = {(x[82+2(0)+1]-x[80+2(0)+1])t[(64)(0)]+(x[80+2(0)]-x[82+2(0)])t[(64)(0)+1]}>>1 | x[82+1] | = {(x[82+1]-x[80+1])t[0]+(x[80+0]-x[82+0])t[0+1]}>>1 | x[83] | = {(x[83]-x[81])t[0]+(x[80]-x[82])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,21,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=21 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(21) = 84. |
Odd base index o = e + 2N'P = 84 + 2(1) = 86. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[84+0] | ={x[84+0]+x[86+0]}>>1 | x[84] | ={x[84]+x[86]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[84+1] | ={x[84+1]+x[86+1]}>>1 | x[85] | ={x[85]+x[87]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[86+2(0)] | = {(x[86+2(0)]-x[84+2(0)])t[(64)(0)]-(x[84+2(0)+1]-x[86+2(0)+1])t[(64)(0)+1]}>>1 | x[86+0] | = {(x[86+0]-x[84+0])t[0]-(x[84+0+1]-x[86+0+1])t[0+1]}>>1 | x[86] | = {(x[86]-x[84])t[0]-(x[85]-x[87])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[86+2(0)+1] | = {(x[86+2(0)+1]-x[84+2(0)+1])t[(64)(0)]+(x[84+2(0)]-x[86+2(0)])t[(64)(0)+1]}>>1 | x[86+1] | = {(x[86+1]-x[84+1])t[0]+(x[84+0]-x[86+0])t[0+1]}>>1 | x[87] | = {(x[87]-x[85])t[0]+(x[84]-x[86])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,22,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=22 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(22) = 88. |
Odd base index o = e + 2N'P = 88 + 2(1) = 90. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[88+0] | ={x[88+0]+x[90+0]}>>1 | x[88] | ={x[88]+x[90]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[88+1] | ={x[88+1]+x[90+1]}>>1 | x[89] | ={x[89]+x[91]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[90+2(0)] | = {(x[90+2(0)]-x[88+2(0)])t[(64)(0)]-(x[88+2(0)+1]-x[90+2(0)+1])t[(64)(0)+1]}>>1 | x[90+0] | = {(x[90+0]-x[88+0])t[0]-(x[88+0+1]-x[90+0+1])t[0+1]}>>1 | x[90] | = {(x[90]-x[88])t[0]-(x[89]-x[91])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[90+2(0)+1] | = {(x[90+2(0)+1]-x[88+2(0)+1])t[(64)(0)]+(x[88+2(0)]-x[90+2(0)])t[(64)(0)+1]}>>1 | x[90+1] | = {(x[90+1]-x[88+1])t[0]+(x[88+0]-x[90+0])t[0+1]}>>1 | x[91] | = {(x[91]-x[89])t[0]+(x[88]-x[90])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,23,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=23 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(23) = 92. |
Odd base index o = e + 2N'P = 92 + 2(1) = 94. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[92+0] | ={x[92+0]+x[94+0]}>>1 | x[92] | ={x[92]+x[94]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[92+1] | ={x[92+1]+x[94+1]}>>1 | x[93] | ={x[93]+x[95]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[94+2(0)] | = {(x[94+2(0)]-x[92+2(0)])t[(64)(0)]-(x[92+2(0)+1]-x[94+2(0)+1])t[(64)(0)+1]}>>1 | x[94+0] | = {(x[94+0]-x[92+0])t[0]-(x[92+0+1]-x[94+0+1])t[0+1]}>>1 | x[94] | = {(x[94]-x[92])t[0]-(x[93]-x[95])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[94+2(0)+1] | = {(x[94+2(0)+1]-x[92+2(0)+1])t[(64)(0)]+(x[92+2(0)]-x[94+2(0)])t[(64)(0)+1]}>>1 | x[94+1] | = {(x[94+1]-x[92+1])t[0]+(x[92+0]-x[94+0])t[0+1]}>>1 | x[95] | = {(x[95]-x[93])t[0]+(x[92]-x[94])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,24,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=24 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(24) = 96. |
Odd base index o = e + 2N'P = 96 + 2(1) = 98. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[96+0] | ={x[96+0]+x[98+0]}>>1 | x[96] | ={x[96]+x[98]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[96+1] | ={x[96+1]+x[98+1]}>>1 | x[97] | ={x[97]+x[99]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[98+2(0)] | = {(x[98+2(0)]-x[96+2(0)])t[(64)(0)]-(x[96+2(0)+1]-x[98+2(0)+1])t[(64)(0)+1]}>>1 | x[98+0] | = {(x[98+0]-x[96+0])t[0]-(x[96+0+1]-x[98+0+1])t[0+1]}>>1 | x[98] | = {(x[98]-x[96])t[0]-(x[97]-x[99])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[98+2(0)+1] | = {(x[98+2(0)+1]-x[96+2(0)+1])t[(64)(0)]+(x[96+2(0)]-x[98+2(0)])t[(64)(0)+1]}>>1 | x[98+1] | = {(x[98+1]-x[96+1])t[0]+(x[96+0]-x[98+0])t[0+1]}>>1 | x[99] | = {(x[99]-x[97])t[0]+(x[96]-x[98])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,25,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=25 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(25) = 100. |
Odd base index o = e + 2N'P = 100 + 2(1) = 102. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[100+0] | ={x[100+0]+x[102+0]}>>1 | x[100] | ={x[100]+x[102]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[100+1] | ={x[100+1]+x[102+1]}>>1 | x[101] | ={x[101]+x[103]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[102+2(0)] | = {(x[102+2(0)]-x[100+2(0)])t[(64)(0)]-(x[100+2(0)+1]-x[102+2(0)+1])t[(64)(0)+1]}>>1 | x[102+0] | = {(x[102+0]-x[100+0])t[0]-(x[100+0+1]-x[102+0+1])t[0+1]}>>1 | x[102] | = {(x[102]-x[100])t[0]-(x[101]-x[103])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[102+2(0)+1] | = {(x[102+2(0)+1]-x[100+2(0)+1])t[(64)(0)]+(x[100+2(0)]-x[102+2(0)])t[(64)(0)+1]}>>1 | x[102+1] | = {(x[102+1]-x[100+1])t[0]+(x[100+0]-x[102+0])t[0+1]}>>1 | x[103] | = {(x[103]-x[101])t[0]+(x[100]-x[102])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,26,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=26 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(26) = 104. |
Odd base index o = e + 2N'P = 104 + 2(1) = 106. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[104+0] | ={x[104+0]+x[106+0]}>>1 | x[104] | ={x[104]+x[106]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[104+1] | ={x[104+1]+x[106+1]}>>1 | x[105] | ={x[105]+x[107]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[106+2(0)] | = {(x[106+2(0)]-x[104+2(0)])t[(64)(0)]-(x[104+2(0)+1]-x[106+2(0)+1])t[(64)(0)+1]}>>1 | x[106+0] | = {(x[106+0]-x[104+0])t[0]-(x[104+0+1]-x[106+0+1])t[0+1]}>>1 | x[106] | = {(x[106]-x[104])t[0]-(x[105]-x[107])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[106+2(0)+1] | = {(x[106+2(0)+1]-x[104+2(0)+1])t[(64)(0)]+(x[104+2(0)]-x[106+2(0)])t[(64)(0)+1]}>>1 | x[106+1] | = {(x[106+1]-x[104+1])t[0]+(x[104+0]-x[106+0])t[0+1]}>>1 | x[107] | = {(x[107]-x[105])t[0]+(x[104]-x[106])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,27,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=27 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(27) = 108. |
Odd base index o = e + 2N'P = 108 + 2(1) = 110. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[108+0] | ={x[108+0]+x[110+0]}>>1 | x[108] | ={x[108]+x[110]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[108+1] | ={x[108+1]+x[110+1]}>>1 | x[109] | ={x[109]+x[111]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[110+2(0)] | = {(x[110+2(0)]-x[108+2(0)])t[(64)(0)]-(x[108+2(0)+1]-x[110+2(0)+1])t[(64)(0)+1]}>>1 | x[110+0] | = {(x[110+0]-x[108+0])t[0]-(x[108+0+1]-x[110+0+1])t[0+1]}>>1 | x[110] | = {(x[110]-x[108])t[0]-(x[109]-x[111])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[110+2(0)+1] | = {(x[110+2(0)+1]-x[108+2(0)+1])t[(64)(0)]+(x[108+2(0)]-x[110+2(0)])t[(64)(0)+1]}>>1 | x[110+1] | = {(x[110+1]-x[108+1])t[0]+(x[108+0]-x[110+0])t[0+1]}>>1 | x[111] | = {(x[111]-x[109])t[0]+(x[108]-x[110])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,28,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=28 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(28) = 112. |
Odd base index o = e + 2N'P = 112 + 2(1) = 114. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[112+0] | ={x[112+0]+x[114+0]}>>1 | x[112] | ={x[112]+x[114]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[112+1] | ={x[112+1]+x[114+1]}>>1 | x[113] | ={x[113]+x[115]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[114+2(0)] | = {(x[114+2(0)]-x[112+2(0)])t[(64)(0)]-(x[112+2(0)+1]-x[114+2(0)+1])t[(64)(0)+1]}>>1 | x[114+0] | = {(x[114+0]-x[112+0])t[0]-(x[112+0+1]-x[114+0+1])t[0+1]}>>1 | x[114] | = {(x[114]-x[112])t[0]-(x[113]-x[115])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[114+2(0)+1] | = {(x[114+2(0)+1]-x[112+2(0)+1])t[(64)(0)]+(x[112+2(0)]-x[114+2(0)])t[(64)(0)+1]}>>1 | x[114+1] | = {(x[114+1]-x[112+1])t[0]+(x[112+0]-x[114+0])t[0+1]}>>1 | x[115] | = {(x[115]-x[113])t[0]+(x[112]-x[114])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,29,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=29 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(29) = 116. |
Odd base index o = e + 2N'P = 116 + 2(1) = 118. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[116+0] | ={x[116+0]+x[118+0]}>>1 | x[116] | ={x[116]+x[118]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[116+1] | ={x[116+1]+x[118+1]}>>1 | x[117] | ={x[117]+x[119]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[118+2(0)] | = {(x[118+2(0)]-x[116+2(0)])t[(64)(0)]-(x[116+2(0)+1]-x[118+2(0)+1])t[(64)(0)+1]}>>1 | x[118+0] | = {(x[118+0]-x[116+0])t[0]-(x[116+0+1]-x[118+0+1])t[0+1]}>>1 | x[118] | = {(x[118]-x[116])t[0]-(x[117]-x[119])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[118+2(0)+1] | = {(x[118+2(0)+1]-x[116+2(0)+1])t[(64)(0)]+(x[116+2(0)]-x[118+2(0)])t[(64)(0)+1]}>>1 | x[118+1] | = {(x[118+1]-x[116+1])t[0]+(x[116+0]-x[118+0])t[0+1]}>>1 | x[119] | = {(x[119]-x[117])t[0]+(x[116]-x[118])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,30,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=30 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(30) = 120. |
Odd base index o = e + 2N'P = 120 + 2(1) = 122. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[120+0] | ={x[120+0]+x[122+0]}>>1 | x[120] | ={x[120]+x[122]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[120+1] | ={x[120+1]+x[122+1]}>>1 | x[121] | ={x[121]+x[123]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[122+2(0)] | = {(x[122+2(0)]-x[120+2(0)])t[(64)(0)]-(x[120+2(0)+1]-x[122+2(0)+1])t[(64)(0)+1]}>>1 | x[122+0] | = {(x[122+0]-x[120+0])t[0]-(x[120+0+1]-x[122+0+1])t[0+1]}>>1 | x[122] | = {(x[122]-x[120])t[0]-(x[121]-x[123])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[122+2(0)+1] | = {(x[122+2(0)+1]-x[120+2(0)+1])t[(64)(0)]+(x[120+2(0)]-x[122+2(0)])t[(64)(0)+1]}>>1 | x[122+1] | = {(x[122+1]-x[120+1])t[0]+(x[120+0]-x[122+0])t[0+1]}>>1 | x[123] | = {(x[123]-x[121])t[0]+(x[120]-x[122])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
(P,b,n)=(5,31,0) |
Loop P=5 of p=log2N=log264=6 loops indexed P=0...p-1=0...6-1=0...5. |
Subblock b=31 of BP=B5=2P=25=32 subblocks, indexed b=0...B5-1=0...31. |
Subblock size=NP|P=5=N5=N/BP|(N=64,P=5)=(2p/2P)|(p=6,P=5)=2p-P|(p=6,P=5)=26-5=2. |
Butterfly n=0 of N'P=NP/2=2p-P-1=26-5-1=1 butterflies indexed by n=0...N'P-1=0...0. |
Even base index e = 2NPb = 2(2)(31) = 124. |
Odd base index o = e + 2N'P = 124 + 2(1) = 126. |
Twiddle step size s = 2P+1 = 25+1 = 64. |
x[e+2n] | ={x[e+2n]+x[o+2n]}>>1 | x[124+0] | ={x[124+0]+x[126+0]}>>1 | x[124] | ={x[124]+x[126]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[e+2n+1] | ={x[e+2n+1]+x[o+2n+1]}>>1 | x[124+1] | ={x[124+1]+x[126+1]}>>1 | x[125] | ={x[125]+x[127]}>>1 | | ={0000 +0000}>>1 | | ={00000}>>1 | | =0000 | |
x[o+2n] | = {(x[o+2n]-x[e+2n])t[sn]-(x[e+2n+1]-x[o+2n+1])t[sn+1]}>>1 | x[126+2(0)] | = {(x[126+2(0)]-x[124+2(0)])t[(64)(0)]-(x[124+2(0)+1]-x[126+2(0)+1])t[(64)(0)+1]}>>1 | x[126+0] | = {(x[126+0]-x[124+0])t[0]-(x[124+0+1]-x[126+0+1])t[0+1]}>>1 | x[126] | = {(x[126]-x[124])t[0]-(x[125]-x[127])t[1]}>>1 | | = {(0000-0000)8000-(0000-0000)0000}>>1 | | = {(00000)8000-(00000)0000}>>1 | | = {00000 - 00000}>>1 | | = {00000}>>1 | | = 0000 | |
x[o+2n+1] | = {(x[o+2n+1]-x[e+2n+1])t[sn]+(x[e+2n]-x[o+2n])t[sn+1]}>>1 | x[126+2(0)+1] | = {(x[126+2(0)+1]-x[124+2(0)+1])t[(64)(0)]+(x[124+2(0)]-x[126+2(0)])t[(64)(0)+1]}>>1 | x[126+1] | = {(x[126+1]-x[124+1])t[0]+(x[124+0]-x[126+0])t[0+1]}>>1 | x[127] | = {(x[127]-x[125])t[0]+(x[124]-x[126])t[1]}>>1 | | = {(0000-0000)8000+(0000-0000)0000}>>1 | | = {(00000)8000+(00000)0000}>>1 | | = {00000+00000}>>1 | | = {00000}>>1 | | = 0000 | |
Return to Table of Contents
Return to Table of Contents