John Bryan
$$\int_0^1 sin(x) dx$$ | |
---|---|
Exact | 0.459697694131860 |
Six-Point LG (N=6) | 0.459697694131861 |
Composite Simpson N=600 | 0.459697694131861 |
Six-Point LG (N=6) difference from exact | 9.436895709313831e-16 |
Composite Simpson N=600 difference from exact | 9.992007221626409e-16 |
$$\int_1^3 x^5 dx$$ | |
---|---|
Exact | 121.3333333333333 |
Six-Point LG (N=6) | 121.3333333333338 |
Composite Simpson N=600 | 121.3333333333539 |
Six-Point LG (N=6) difference from exact | 4.405364961712621e-13 |
Composite Simpson N=600 difference from exact | 2.061995019175811e-11 |
Composite Quadrature for $\int_0^{50} sin(x) dx$ | |
---|---|
Exact | 3.503397150788667e-02 |
Composite Six-Point LG (N-6), 50 segments | 3.503397150788601e-02 |
Composite Simpson N=12500 | 3.503397150788788e-02 |
Adaptive Simpson | 3.503397150788623e-02 |
Composite Six-Point LG (N=6), 50 segments, difference from exact | 6.661338147750939e-16 |
Composite Simpson N=12500, difference from exact | 1.207367539279858e-15 |
Adaptive Simpson difference from exact | 4.440892098500626e-16 |