Implementation of Adaptive Gauss-Kronrod Quadrature in Octave and Python
John Bryan
Setup
Adaptive GK(15,7) quadrature implemented.
The implementation uses
K15 interlacing zeros of $E_{8}$ and $L_{7}$ as nodes.
G7 using zeros of $L_{7}$ as nodes.
$\lvert K15-G7 \rvert$ used as error estimate.
a=lower limit of integration.
b=upper limit of integration.
n=number of nodes.
$x_{k,n}$ = kth node of the n nodes.
$w_{k,n}$= kth weight of the n weights.
c=(b-a)/2
d=(b+a)/2
\begin{equation} \int_a^b f(x) dx \approx c\sum_{k=1}^n w_{k,n}f(cx_{k,n}+d) \end{equation}
Octave implementation
.
Python implementation
.
Results
.
$\int_0^{50} sin(x) dx$
Exact
3.503397150788667e-02
Adaptive GK(15,7)
3.503397150788645e-02
Adaptive GK(15,7) difference from exact
2.220446049250313e-16
eps
2.220446049250313e-16