1 '''
  2 Central Difference, Richardson Extrapolation, Chebyshev, Complex-Step numerical differentiation 
  3 Python 3.10.12
  4 John Bryan, 2024 
  5 '''
  6 
  7 import numpy as np
  8 import matplotlib.pyplot as plt
  9 import sympy as sp
 10 import math
 11 
 12 SMALL_SIZE = 8
 13 LOW=10
 14 HIGH=80
 15 
 16 plt.rc('font', size=SMALL_SIZE)  # default font size
 17 plt.rc('axes', titlesize=SMALL_SIZE)  # title font size
 18 plt.rcParams['axes.facecolor'] = 'lightgrey'
 19 plt.rcParams['figure.facecolor'] = 'lightgrey'
 20 
 21 
 22 def plotfunction(xb,y,yprime,yprimeprime,maxabserror,maxabserror2,lower,upper,pn):
 23    '''
 24    purpose: plot max abs error Chebyshev Differentiation as a function of n
 25    input xb: x-values 
 26    input y: function taking derivative of 
 27    input yprime: first derivative 
 28    input yprimeprime: second derivative 
 29    input maxabserror: max y' errors for given n-values 
 30    input maxabserrorb: max y'' errors for given n-values 
 31    input lower: lower domain point
 32    input upper: upper domain point
 33    input pn: figure number 
 34    output: none
 35    '''
 36    plt.figure(figsize=(5,5))
 37    title0=("Maximum Absolute Error in Chebyshev Differentiation of y= " + r"$" + f"{sp.latex(y)}" +
 38            r"$"  + ", (" + str(lower) + " < x < " + str(upper) + ")" + " as n varies")
 39    plt.semilogy(xb, maxabserror, marker = ".", markersize="8", color = "blue",
 40                 label="y'=" + r"$" + f"{sp.latex(yprime)}" + r"$" + " max abs error using Chebyshev Differentiation")
 41    plt.semilogy(xb, maxabserror2, marker = "." , markersize="8", color = "red",
 42                label='y"=' + r"$" + f"{sp.latex(yprimeprime)}" + r"$" + " max abs error using Chebyshev Differentiation")
 43    plt.xlabel("n")
 44    plt.ylabel("Maximum Absolute Error")
 45    plt.title(title0)
 46    plt.grid()
 47    ax = plt.gca()
 48    ax.set_xlim([LOW, HIGH])
 49    # Reduce axis height by 20%
 50    box = ax.get_position()
 51    ax.set_position([box.x0, box.y0 + box.height * 0.2, box.width, box.height * 0.8])
 52    legend = ax.legend(frameon = 1)
 53    ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), fancybox=True, shadow=True, ncol=1,
 54              frameon=1, facecolor='lightgrey' )
 55    plt.savefig("nd" + str(pn) + ".png",bbox_inches='tight')
 56 
 57 
 58 def plotcheb(xx,yy,yys,y,yprime,lower,upper,pn):
 59    '''
 60    purpose: plot exact derivative and Chebyshev Differentiation approximation 
 61    input xx: x-values input 
 62    input yy: numerical differentiation results 
 63    input yys: exact differentiation values 
 64    input y: function taking derivative of
 65    input yprime: first derivative
 66    input lower: lower domain boundary
 67    input upper: upper domain boundary
 68    input pn: figure number
 69    output: none
 70    '''
 71    plt.figure(figsize=(5,5))
 72    plt.xlim(lower,upper)
 73    title0=("Chebyshev Differntiation Approximation of y= " + r"$" + f"{sp.latex(y)}"
 74           + r"$" + ", (" + str(lower) + " < x < " + str(upper) + ")")
 75    plt.plot(xx, yy, marker = "^", markeredgewidth=1, color = "blue",
 76             label="Chebyshev differentiation approximation of y'=" + r"$" + f"{sp.latex(yprime)}" + r"$" + " ")
 77    plt.plot(xx, yys, marker = "o", markerfacecolor = "None", markeredgewidth=1, color = "red",
 78             label="Exact derivative y'=" + r"$" + f"{sp.latex(yprime)}" + r"$" + " ")
 79    plt.xlabel("x")
 80    plt.ylabel("dy/dx")
 81    plt.title(title0)
 82    plt.grid()
 83    ax = plt.gca()
 84    # Reduce axis height by 20%
 85    box = ax.get_position()
 86    ax.set_position([box.x0, box.y0 + box.height * 0.2, box.width, box.height * 0.8])
 87    # Place legend below axis
 88    ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), fancybox=True, shadow=True, ncol=1)
 89    plt.savefig("nd" + str(pn) + ".png",bbox_inches='tight')
 90 
 91 
 92 def plotcs(h,errs,errs2,y,yprime,yprimeprime):
 93    '''
 94    purpose: plot absolute errors of using complex-step differentiation as a function of varying h
 95    input: h :step size 
 96    input: errs :absolute derivative errors dependent on step size h 
 97    input: errs2 :absolute second derivative errors dependent on step size h 
 98    input: y: function taking derivative of
 99    input: yprime: exact derivative function
100    input: yprimeprime: exact second derivative function
101    outputs:none
102    '''
103    plt.figure(figsize=(5,5))
104    plt.xlim(h[-1],h[0])
105    title0=("Absolute Error Approximating Derivative of y= " + r"$" + f"{sp.latex(y)}"
106           + r"$" + ",x=1," + "\n" + "as a function of h in Complex Step Differentiation")
107    plt.plot(h,errs,marker=".", color="blue", label=("abs error approximating y'=" +
108             r"$" + f"{sp.latex(yprime)}" + r"$" + " using complex step at x=1"))
109    plt.plot(h,errs2,marker=".", color="red", label=("abs error approximating y''=" +
110             r"$" + f"{sp.latex(yprimeprime)}" + r"$" + " using complex step at x=1"))
111    plt.title(title0)
112    plt.yscale('log')
113    plt.xscale('log')
114    plt.xlabel('step size h')
115    plt.ylabel('absolute error')
116    plt.grid()
117    ax = plt.gca()
118    # Reduce axis height by 20%
119    box = ax.get_position()
120    ax.set_position([box.x0, box.y0 + box.height * 0.2, box.width, box.height * 0.8])
121    # Place legend below axis
122    ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), fancybox=True, shadow=True, ncol=1)
123    plt.savefig("cs" + ".png",bbox_inches='tight')
124 
125 
126 def plotcd(h,cderror,secondderivativeerror,Richardsonerror,fivepointmethoderror,Lerror,nonsymmetricerror,y,yprime,yprimeprime):
127    '''
128    purpose: plot absolute errors of using central difference as a function of varying h
129    input: h :step size 
130    input: cderror :absolute errors central difference first deriv. approx. dependent on step size h 
131    input: secondderivativerror: absolute errors of second derivative approx. dependent on step size h 
132    input: Richardsonerror :absolute errors first deriv. using Richardson extrapolation dependent on step size h 
133    input: fivepointerror: absolute errors of five-point method derivative approx. dependent on step size h 
134    input: Lerror: absolute errors of five-point method with Richardson extrapolation derivative approx. dependent on step size h 
135    input: nonsymmetricerror: absolute errors of nonsymmetric difference derivative approx. dependent on step size h 
136    input: y: function taking derivative of
137    input: yprime: exact derivative function
138    input: yprimeprime: exact second derivative function
139    outputs:none
140    '''
141    plt.figure(figsize=(5,5))
142    plt.xlim(h[-1],h[0])
143    title0=("Absolute Error Approximating Derivative of" + " y= " + r"$" + f"{sp.latex(y)}"
144           + r"$" + ",x=1,"  + "\n" + "as a function of h in Central Difference, Richardson Extrapolation, et al")
145    plt.plot(h,secondderivativeerror, marker=".", markersize=8, color="green", label=("abs error approximating y''=" +
146            r"$" + f"{sp.latex(yprimeprime)}" + r"$" + " using eq.2 at x=1"))
147    plt.plot(h,nonsymmetricerror, marker=".", markersize=8, color="orange", label=("abs error approximating y'=" +
148             r"$" + f"{sp.latex(yprime)}" + r"$" + " with nonsymmetric method at x=1"))
149    plt.plot(h,cderror, marker=".", markersize=8, color="blue", label=("abs error approximating y'=" +
150            r"$" + f"{sp.latex(yprime)}" + r"$" + " using central difference at x=1"))
151    plt.plot(h,Richardsonerror, marker=".", markersize=8, color="red", label=("abs error approximating y'=" +
152            r"$" + f"{sp.latex(yprime)}" + r"$" + " with Richardson extrapolation at x=1"))
153    plt.plot(h,fivepointmethoderror, marker=".", markersize=8, color="brown", label=("abs error approximating y'=" +
154            r"$" + f"{sp.latex(yprime)}" + r"$" + " with five-point method at x=1"))
155    plt.plot(h,Lerror, marker=".", markersize=8, color="magenta", label=("abs error approximating y'=" +
156             r"$" + f"{sp.latex(yprime)}" + r"$" + " with eq.6 at x=1"))
157    plt.title(title0)
158    plt.yscale('log')
159    plt.xscale('log')
160    plt.xlabel('step size h')
161    plt.ylabel('absolute error')
162    plt.grid()
163    ax = plt.gca()
164    # Reduce axis height by 20%
165    box = ax.get_position()
166    ax.set_position([box.x0, box.y0 + box.height * 0.2, box.width, box.height * 0.8])
167    # Place legend below axis
168    ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), fancybox=True, shadow=True, ncol=1)
169    plt.savefig("cd" + ".png",bbox_inches='tight')
170 
171 
172 def ChebyshevNodesAndSpectralDifferentiationMatrix(apoint,bpoint,n):
173    ''' 
174    purpose: return n+1 Chebyshev nodes and (n+1)-by-(n+1) Chebyshev Differentiation matrix
175    input apoint: lower domain point
176    input bpoint: upper domain point
177    input n: one less than the number of nodes
178    output x: n+1 nodes in [apoint,bpoint]
179    output d: (n+1)-by-(n+1) spectral differentiation matrix 
180    '''
181    x=np.ones(n+1)
182    for k in range (0,n+1):
183       x[k] = -np.cos(k*np.pi/n)    # eq 7 : nodes in [-1,1]  
184    c=np.zeros(n+1)
185    c[0]=2    # eq 8 case 1
186    for i in range (1,n):
187       c[i]=1.    # eq 8 case 2
188    c[n]=2.    # eq 8 case 1
189    dij = np.zeros((n+1,n+1),dtype='float64')
190    for i in range (0,n+1):
191       for j in range (0,n+1):
192          if i!=j and i+j<=n:
193             dij[i][j] = (-1)**(i+j)*c[i]/(c[j]*(x[i]-x[j]))  # eq 9 case 1
194    for i in range (0,n+1):
195       for j in range (0,n+1):
196          if i!=j and i+j>n:
197             dij[i][j]=-dij[n-i][n-j]    # eq 9 case 2 
198    print("\n\n")
199    for i in range (0,n+1):
200       unsorted0=np.zeros(n)
201       sorted0=np.zeros(n)
202       sortedsum=0.
203       k=0
204       for j in range (0,n+1):
205          if (j!=i):
206             unsorted0[k]=dij[i][j]
207             k=k+1
208       sorted0=np.sort(unsorted0)
209       sortedsum=0.
210       sortedsum=math.fsum(sorted0)
211       dij[i][i]=-sortedsum             # eq 9 case 3 : nst (negative sum trick) 
212    x=apoint+((bpoint-apoint)*(x+1)/2)  # eq 10: [-1,1] -> [a,b]
213    dij=2*dij/(bpoint-apoint)           # eq 11: scale dij for a,b not -1,1
214    return x,dij
215 
216 
217 def min(c, d):
218    if c <= d:
219        return c
220    else:
221        return d
222 
223 
224 def testcheb():
225    '''
226    purpose: test Chebyshev Differentiation matrix method
227    inputs: none
228    outputs: none
229    '''
230    apoint=[-1,3,-2];
231    bpoint=[1,7,2];
232    maxabserror=np.zeros(8)
233    maxabserror2=np.zeros(8)
234    xb=np.zeros(8)
235    x = sp.Symbol('x')
236    y = sp.exp(sp.cos(3*x))
237    yprime = y.diff(x)
238    yprimeprime = yprime.diff(x)
239    f = sp.lambdify(x, y, 'numpy')
240    fprime = sp.lambdify(x, yprime, 'numpy')
241    fprimeprime = sp.lambdify(x, yprimeprime, 'numpy')
242    pn=0
243    for c in range (0,3):
244       number:int = 0
245       for n in range (10,90,10):
246          xx,dij=ChebyshevNodesAndSpectralDifferentiationMatrix(apoint[c],bpoint[c],n)
247          y0=f(xx)
248          yy=fprime(xx)
249          yyy=fprimeprime(xx)
250          yys=np.matmul(dij,y0)     # eq 12  
251          yysecond=np.matmul(dij,yys)  # eq  13
252          a=yy-yys
253          aa=yyy-yysecond
254          b=abs(a)
255          bb=abs(aa)
256          maxabserror[number]=np.max(b)
257          maxabserror2[number]=np.max(bb)
258          xb[number]=n
259          number=number+1
260       plotcheb(xx,yy,yys,y,yprime,apoint[c],bpoint[c],pn)
261       pn=pn+1
262       plotfunction(xb,y,yprime,yprimeprime,maxabserror,maxabserror2,apoint[c],bpoint[c],pn)
263       pn=pn+1
264 
265 
266 def testcs():
267    '''
268    purpose: test complex-step differentiation
269    inputs: none
270    outputs: none
271    '''
272    maxabserror=np.zeros(8)
273    xb=np.zeros(8)
274    x = sp.Symbol('x')
275    y = sp.exp(sp.cos(3*x))
276    yprime = y.diff(x)
277    yprimeprime = yprime.diff(x)
278    f = sp.lambdify(x, y, 'numpy')
279    fprime = sp.lambdify(x, yprime, 'numpy')
280    fprimeprime = sp.lambdify(x, yprimeprime, 'numpy')
281    h = 10.**(-np.linspace(1,8,8))
282    errs = np.zeros(8)
283    errs2 = np.zeros(8)
284    exact=fprime(1)
285    exact2=fprimeprime(1)
286    for k in range(0,8):
287       errs[k] = abs(f(complex(1,h[k])).imag/h[k]-exact)    # includes eq. 14 
288       d2approxterm1=(2/(h[k]**2))*f(1)
289       d2approxterm2=(2/(h[k]*h[k]))*f(complex(1,h[k])).real
290       d2approx=d2approxterm1-d2approxterm2    # eq. 15 
291       errs2[k]=abs(d2approx-exact2)
292    plotcs(h,errs,errs2,y,yprime,yprimeprime)
293 
294 def testcd():
295    '''
296    purpose: test central difference first derivative approx. eq.1 
297      test second derivative approx. eq.2 
298      test central difference w/ Richardson extrapolation eq.3
299      test nonsymmetric difference eq.4
300      test five-point method eq.5
301      test eq.6
302    inputs: none
303    outputs: none
304    '''
305    maxabserror=np.zeros(11)
306    xb=np.zeros(11)
307    x = sp.Symbol('x')
308    y = sp.exp(sp.cos(3*x))
309    yprime = y.diff(x)
310    yprimeprime = yprime.diff(x)
311    f = sp.lambdify(x, y, 'numpy')
312    fprime = sp.lambdify(x, yprime, 'numpy')
313    fprimeprime = sp.lambdify(x, yprimeprime, 'numpy')
314    h = 10.**(-np.linspace(1,6,11))
315    cderror = np.zeros(11)
316    secondderivativeerror = np.zeros(11)
317    error2 = np.zeros(11)
318    Richardsonerror = np.zeros(11)
319    fivepointmethoderror = np.zeros(11)
320    nonsymmetricerror = np.zeros(11)
321    Lerror = np.zeros(11)
322    cd = np.zeros(11)
323    approx2 = np.zeros(11)
324    Richardson = np.zeros(11)
325    secondderivative = np.zeros(11)
326    fivepointmethod = np.zeros(11)
327    fivepointmethod2 = np.zeros(11)
328    nonsymmetric = np.zeros(11)
329    L = np.zeros(11)
330    exact=fprime(1)
331    exact2=fprimeprime(1)
332    for k in range(0,11):
333       cd[k]=(f(1+h[k])-f(1-h[k]))/(2*h[k])      #eq.1
334       secondderivative[k]=(f(1+h[k])-(2*f(1))+f(1-h[k]))/((h[k])**2)   #eq.2
335       approx2[k]=(f(1+(h[k]/2))-f(1-(h[k]/2)))/h[k]
336       Richardson[k]=approx2[k]+((approx2[k]-cd[k])/3)      #eq.3
337       nonsymmetric[k]=(-3*f(1)+4*f(1+h[k])-f(1+2*h[k]))/(2*h[k])       #eq.4
338       fivepointmethod[k]=(-f(1+2*h[k])+(8*f(1+h[k]))-(8*f(1-h[k]))+f(1-2*h[k]))/(12*h[k])  #eq.5
339       fivepointmethod2[k]=(-f(1+4*h[k])+(8*f(1+2*h[k]))-(8*f(1-2*h[k]))+f(1-4*h[k]))/(24*h[k])
340       L[k]=(16*fivepointmethod[k]-fivepointmethod2[k])/15  #eq.6
341       cderror[k] = abs(cd[k]-exact)
342       secondderivativeerror[k] = abs(secondderivative[k]-exact2)
343       Richardsonerror[k] = abs(Richardson[k]-exact)
344       fivepointmethoderror[k] = abs(fivepointmethod[k]-exact)
345       Lerror[k] = abs(L[k]-exact)
346       nonsymmetricerror[k] = abs(nonsymmetric[k]-exact)
347    plotcd(h,cderror,secondderivativeerror,Richardsonerror,fivepointmethoderror,Lerror,nonsymmetricerror,y,yprime,yprimeprime)
348 
349 
350 
351 testcd()
352 testcheb()
353 testcs()